首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During thyroidectomy, the stimulating action of the catalytic amounts of a thermostable fraction of rat liver and diaphragm cytoplasm on Ca2+ transport in mitochondria, which indicates the decrease of the activity of an insulin-dependent cytoplasmic regulator (IDR) in insulin target organs. Thyroidectomized rats also manifested a decrease in blood insulin and glucose concentrations. Administration of the physiological doses of thyroxine produced an increase in both blood glucose concentration and IDR activity in the liver and diaphragm of thyroidectomized rats. Experiments with measuring the kinetics of the swelling of deenergized mitochondria in isoosmotic solution of ammonium pyruvate demonstrated the inhibition of liver mitochondrial swelling in thyroidectomized rats.  相似文献   

2.
Mitochondrial were prepared from fat-cells isolated from rat epididymal adipose tissues of fed and 48 h-starved rats to study some aspects of fatty acid oxidation in this tissue. The data were compared with values obtained in parallel experiments with liver mitochondria that were prepared and incubated under identical conditions. 2. In the presence of malonate, fluorocitrate and arsenite, malate, but not pyruvate-bicarbonate, facilitated palmitoyl-group oxidation in both types of mitochondria. In the presence of malate, fat-cell mitochondria exhibited slightly higher rates of palmitoylcarnitine oxidation than liver. Rates of octanoylcarnitine oxidation were similar in liver and fat-cell mitochondria. Uncoupling stimulated acylcarnitine oxidation in liver, but not in fat-cell mitochondria. Oxidation of palmitoyl- and octanoyl-carnitine was partially additive in fat-cell but not in liver mitochondria. Starvation for 48 h significantly decreased both palmitoylcarnitine oxidation and latent carnitine palmitoyltransferase activity in fat-cell mitochondria. Starvation increased latent carnitine palmitoyltransferase activity in liver mitochondria but did not alter palmitoylcarnitine oxidation. These results suggested that palmitoylcarnitine oxidation in fat-cell but not in liver mitochondria may be limited by carnitine palmitoyltransferase 2 activity. 3. Fat-cell mitochondria also differed from liver mitochondria in exhibiting considerably lower rates of carnitine-dependent oxidation of palmitoyl-CoA or palmitate, suggesting that carnitine palmitoyltransferase 1 activity may severely rate-limit palmitoyl-CoA oxidation in adipose tissue.  相似文献   

3.
The effects of microbial phenolic metabolites on the activities of enzymes of the tricarboxylic acid cycle were investigated in isolated mitochondria. The detection of metabolites of the tricarboxylic acid cycle in the blood of patients with sepsis as potential biomarkers of mitochondrial dysfunction was investigated. We found that microbial phenolic metabolites possess an inhibitory effect on the activity of dehydrogenases, as determined by the reduction of dichlorophenolindophenol and nitroblue tetrazolium in liver mitochondria and liver homogenates. The effect was more pronounced in the case of the oxidation of NAD-dependent substrates than succinate oxidation, as well as at lower concentrations of microbial metabolites than in the case of inhibition of respiration. Using gas chromatography coupled with mass spectrometry it was shown that the content of the tricarboxylic acid cycle metabolites is lower in the blood of patients with sepsis as compared to healthy donors. Our data demonstrate that microbial phenolic acids can significantly contribute to mitochondrial dysfunction and to metabolic suppression, both of which are characteristic of these pathologies.  相似文献   

4.
The studies are conducted on the model of grave toxicosis in vivo in rabbits. It is shown that an increase in the ammonia content in blood and tissues enhances the content of lactate, glutamate, oxaloacetate in the liver and kidneys of animals, decreases the level of pyruvate, alpha-ketoglutarate and malate in the liver tissue. The NAD+/NADH ratio in the cytoplasm of the liver and kidney cells decreases, the ratio of NADP-pairs in the cytoplasm and mitochondria of these tissues noticeably increases. The energy metabolism is disturbed sharply, the content of adenosine phosphates lowers.  相似文献   

5.
Livers of genetically obese Zucker rats showed, compared with lean controls, hypertrophy and enrichment in triacylglycerols, indicating that fatty acid metabolism was directed towards lipogenesis and esterification rather than towards fatty acid oxidation. Mitochondrial activities of cytochrome c oxidase and monoamine oxidase were significantly lower when expressed per g wet wt. of liver, whereas peroxisomal activities of urate oxidase and palmitoyl-CoA-dependent NAD+ reduction were unchanged. Liver mitochondria were able to oxidize oleic acid at the same rate in both obese and lean rats. For reactions occurring inside the mitochondria, e.g. octanoate oxidation and palmitoyl-CoA dehydrogenase, no difference was found between both phenotypes. Total carnitine palmitoyl-, octanoyl- and acetyl-transferase activities were slightly higher in mitochondria from obese rats, whereas the carnitine content of both liver tissue and mitochondria was significantly lower in obese rats compared with their lean littermates. The carnitine palmitoyltransferase I activity was slightly higher in liver mitochondria from obese rats, but this enzyme was more sensitive to malonyl-CoA inhibition in obese than in lean rats. The above results strongly suggest that the impaired fatty acid oxidation observed in the whole liver of obese rats is due to the diminished transport of fatty acids across the mitochondrial inner membrane via the carnitine palmitoyltransferase I. This effect could be reinforced by the decreased mitochondrial content per g wet wt. of liver. The depressed fatty acid oxidation may explain in part the lipid infiltration of liver observed in obese Zucker rats.  相似文献   

6.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

7.
Hepatitis C infection causes a state of chronic oxidative stress, which may contribute to fibrosis and carcinogenesis in the liver. Previous studies have shown that expression of the HCV core protein in hepatoma cells depolarized mitochondria and increased reactive oxygen species (ROS) production, but the mechanisms of these effects are unknown. In this study we examined the properties of liver mitochondria from transgenic mice expressing HCV core protein, and from normal liver mitochondria incubated with recombinant core protein. Liver mitochondria from transgenic mice expressing the HCV proteins core, E1 and E2 demonstrated oxidation of the glutathione pool and a decrease in NADPH content. In addition, there was reduced activity of electron transport complex I, and increased ROS production from complex I substrates. There were no abnormalities observed in complex II or complex III function. Incubation of control mitochondria in vitro with recombinant core protein also caused glutathione oxidation, selective complex I inhibition, and increased ROS production. Proteinase K digestion of either transgenic mitochondria or control mitochondria incubated with core protein showed that core protein associates strongly with mitochondria, remains associated with the outer membrane, and is not taken up across the outer membrane. Core protein also increased Ca(2+) uptake into isolated mitochondria. These results suggest that interaction of core protein with mitochondria and subsequent oxidation of the glutathione pool and complex I inhibition may be an important cause of the oxidative stress seen in chronic hepatitis C.  相似文献   

8.
Well-coupled mitochondria were isolated from a HuH13 line of human hepatoma cells and human liver tissue. The liver mitochondria showed a feeble glutamine oxidation activity in contrast to the hepatoma mitochondria, whereas they utilized glutamate well for the oxidative phosphorylation. In the liver mitochondria, glutamate was oxidized via the routes of transamination and deamination. On the other hand, glutamate oxidation was initiated preferentially via transamination pathway in the tumor mitochondria. In the liver mitochondria, bicarbonate nearly at a physiological concentration inhibited oxygen uptake with glutamate as substrate. The interaction of bicarbonate with the pathway of glutamate oxidation occurred primarily at the level of succinate dehydrogenase, due to competitive inhibition of the enzyme by the compound. In contrast to the liver mitochondria, glutamate oxidation was not affected by bicarbonate in the tumor mitochondria. These results indicate that the aberrations in the glutamate metabolism and its regulation observed in the hepatoma mitochondria may be favorable to the respiration utilizing glutamine and/or glutamate as an energy source.  相似文献   

9.
The activity of mitochondrial 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) in rat and chicken liver was found to be comparable with the activity of electron transport chain of rat liver mitochondria. This activity is absent in chicken liver mitochondria, which are devoid of the 3-hydroxybutyrate oxidase activity. Both types of mitochondria have nearly identical respiration parameters but respond differently to Mg2+. It was assumed that chicken liver mitochondria are characterized by a low rate of fatty acids oxidation due to the absence of 3-hydroxybutyrate dehydrogenase in these organelles.  相似文献   

10.
The effect of thyroidectomy on oxidative metabolism of rat liver, kidney, and brain mitochondria has been examined. The respiration in liver, kidney, and brain mitochondria was affected differentially after thyroidectomy, the common effect in all the tissues being the impairment in state 3 as well as state 4 rates of succinate oxidation. Thyroidectomy did not have any effect on ADPO ratios; however, compared to normal, respiratory control indexes were, in general, somewhat higher. Thyroidectomy also did not alter total ATPase activity of liver, kidney, and brain mitochondria, although the basal ATPase activity had decreased significantly under these conditions. The cytochrome content of the mitochondria also showed tissue-specific changes after thyroidectomy; however, no significant changes in the absorption characteristics of the cytochromes were seen. The succinate and glutamate dehydrogenase activities of mitochondria from liver, kidney, and brain were not affected by thyroidectomy, thereby ruling out the possibility that the decrease in substrate oxidation may be due to alterations in the primary dehydrogenase levels. It is concluded that thyroid hormone(s) may have a tissue-specific role in regulating the metabolic functions of mitochondria.  相似文献   

11.
运动性内源自由基对大鼠肝线粒体的影响   总被引:10,自引:1,他引:10  
采用大鼠耗竭游泳作为动物运动模型,用戊巴比妥酸(TBA)法测定脂质过氧化水平,薄层色谱—定磷法测定心磷脂含量,细胞色素C还原法测定细胞色素C氧化酶活性。结果如下:耗竭运动时,肝线粒体脂质过氧化水平升高24%;心磷脂含量下降21%;细胞色素C氧化酶活性下降25%。上述结果表明:耗竭运动时,机体内源自由基的产生是运动损伤和整体疲劳的原因之一。  相似文献   

12.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   

13.
ATP-dependent calcium uptake of rat liver microsomes is examined following ingestion of CC14 (2.5 ml/kg). Within 30 min there is an abrupt drop in calcium uptake activity of the liver microsomes. This activity remains down for 48 hours before slowly returning to normal levels. The effect is specific for CC14 as contrasted with CHC13 and CH2Cl2. The CCl4 does not affect similar calcium uptake activity of kidney microsomes. Calcium uptake activity of the liver mitochondria is unaffected. The first 12 hours after CCl4 ingestion there is a relatively slow rise in the calcium content of the liver tissue and mitochondria. After 12 hours a much larger influx of calcium into the tissue and the mitochondria takes place. Forty-eight hours after CCl4 ingestion the process begins to slowly reverse. The following postulated sequence may relate to the CCl4 hepatotocicity. CCl4 is activated to free radicals by the liver endoplasmic reticulum. The free radical inactivate calcium pump activity of the liver endoplasmic reticulum. Calcium levels of the cytoplasm increase and significantly modify ion permeability of the plasma membrane. High levels of external calcium enter the cytoplasm and are sequestered in the mitochondria. The high level of mitochondrial calcium uptake inhibits mitochondrial oxidative phosphorylation. The specific sensitivity of the calcium pump activity of liver microsomes to CCl4 further establishes the identity of a system seperate from the mitochondrial system. The above postulated sequence of events would suggest a critical role in liver metabolism for calcium pump activity of the endoplasmic reticulum.  相似文献   

14.
Respiratory activity of liver mitochondria has been studied in perinatal rabbits (29 day old embryos, neonatal and 30 day old rabbits). Intermediates of carbohydrate metabolism, pyruvate (with malate), as well as of fat metabolism, caprylate, were used as oxidative substrates for mitochondria. Pyruvate was shown to be oxidized more intensively, particularly in liver mitochondria of newborn rabbits. Mitochondrial enzyme system is supposed to promote the oxidation of carbohydrate substrates which is characteristic of a given tissue during perinatal development.  相似文献   

15.
A water-soluble thermostable factor from rat liver cytoplasm whose activity decreases during starvation, causes the uncoupling of oxidative phosphorylation and stimulates pyruvate oxidation in rat liver mitochondria. The activity of this factor is insensitive to pronase treatment. Gel filtration and ion-exchange chromatography resulted in three low molecular weight water-soluble fractions which bear a negative charge at alkaline values of pH and induce electrophoretic transport of K+ and phosphate across the inner mitochondrial membrane. The effect of this factor on K+ transport is manifested at pH less than or equal to 7.0, that on phosphate transport-at pH 6.5-7.6.  相似文献   

16.
The enzyme acetoacetyl-CoA synthetase which catalyzes the synthesis of acetoacetyl-CoA from acetoacetate, CoA and ATP is shown to be present in mitochondrial and cytoplasmic fractions of rat liver. It was decreased in both specific activity and amount after starvation for 48 hours. It is proposed that the synthetase normally functions in the re-utilization of some of the acetoacetate produced within the mitochondrion as well as that reaching the cytoplasm, and that acetoacetate can function as an acetyl carrier between mitochondria and cytoplasm.  相似文献   

17.
Glutamine synthetase and glutaminase activities in various hepatoma cells   总被引:4,自引:0,他引:4  
Glutamine synthetase and glutaminase activities in a series of hepatoma cells of human and rat origins were determined for comparison with normal liver tissues. Marked decrease in glutamine synthetase activity was observed in the tumor cells. Phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal liver tissues. Well coupled mitochondria were isolated from HuH 13 line of human hepatoma cells and human liver. Oxypolarographic tests showed that glutamine oxidation was prominent in the tumor mitochondria, while mitochondria from the liver showed a feeble glutamine oxidation. Glutamine oxidation was inhibited by prior incubation of the mitochondria with DON (6-diazo-5-oxo-L-norleucine), which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor mitochondria to supply ATP.  相似文献   

18.
Well coupled mitochondria were isolated from transplantable chicken hepatoma induced by MC-29 virus. The mitochondrial phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal chicken liver. Glutamate dehydrogenase was undetectable in the tumor mitochondria. Oxypolarographic tests showed the following: glutamine oxidation was prominent in the tumor mitochondria and was mediated through an NAD-linked reaction, while mitochondria from the liver showed a feeble glutamine oxidation; glutamine oxidation by tumor mitochondria was inhibited either by aminooxyacetate, inhibitor of transaminases, or prior incubation of mitochondria with DON (6-diazo-5-oxonorleucine), which inhibited mitochondrial glutaminases. Bromofuroate, inhibitor of glutamate dehydrogenase, had little or no effect; and glutamate oxidation was also inhibited by aminooxyacetate, while it was not affected by DON. These findings clearly show a high glutamate oxidation activity in the hepatoma and indicate that the product of glutamine hydrolysis, glutamate, is catabolized via transamination in the mitochondria to supply ATP.  相似文献   

19.
1. The redox state of the NAD couple of rat liver mitochondria, as measured by the [beta-hydroxybutyrate]/[acetoacetate] ratio, rapidly changed in the direction of oxidation during the preparation of homogenates in a saline medium. The value of the [beta-hydroxybutyrate]/[acetoacetate] ratio fell from 2.3 to 0.15 in 10min. EDTA diminished the fall and succinate prevented it. 2. The redox state of the rat liver cytoplasm, as measured by the [lactate]/[pyruvate] ratio, changed slightly in the direction of reduction during the preparation of homogenate. This was prevented by succinate. 3. In unsupplemented homogenates the differences in the redox states of mitochondria and cytoplasm decreased. Succinate and EDTA together maintained the differences within the physiological range. A measure of the ability of the mitochondria to maintain different redox states in mitochondria and cytoplasm is the value of the expression [lactate][acetoacetate]/[pyruvate][beta-hydroxybutyrate]. If there are no differences in the redox states of the NAD in the two cell compartments the value of the expression is 444 at 37 degrees . The value in the intact rat liver is between 4.7 and 21. 4. alpha-Oxoglutarate or glutamate were still more effective than succinate in maintaining high [beta-hydroxybutyrate]/[acetoacetate] ratios in the homogenates because these substrates supply a reducing agent of NAD(+) and, through succinate, an inhibitor of the oxidation of NADH. 5. When supplemented with alpha-oxoglutarate and EDTA, homogenates readily adjust the redox state of the beta-hydroxybutyrate dehydrogenase system after it has been upset by the addition of either acetoacetate or beta-hydroxybutyrate. 6. Amytal and rotenone raised the value of the [beta-hydroxybutyrate]/[acetoacetate] ratio. This is taken to indicate that the reduction of acetoacetate in the homogenates was not an energy-linked process. 7. 2,4-Dinitrophenol shifted the [beta-hydroxybutyrate]/[acetoacetate] ratio in the presence of succinate in favour of oxidation because it inhibited the oxidation of succinate and accelerated the oxidation of NADH. 8. Rotenone increased the rate of ketone-body formation of liver homogenates, though it decreased the rate of oxygen uptake.  相似文献   

20.
The oxidation by mitochondria of various rat tissues of proline, pyrroline-5-carboxylate (P5C) and a number of aldehydes has been studied and ADP/O ratios determined for liver mitochondria. High oxidative activity for proline and P5C was found only in the liver and kidney. During the oxidation by liver and kidney mitochondria of proline and P5C; glutamate, ammonia, aspartate and some ornithine accumulated, thus suggesting that proline may normally be converted to ornithine by mitochondria. The oxidation of P5C (glutamic acid semialdehyde) by a mitochondrial dehydrogenase may be the same enzyme that oxidizes succinic acid semi-aldehyde but different from that oxidizing acetaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号