首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In heart tissue from mice lacking the intermediate filament (IF) desmin, mitochondria show an abnormal shape and distribution (Thornell et al., 1997). In the present study we have isolated heart mitochondria from desmin null (D–/–) and control (D+/+) mice, and analyzed their composition by SDS–PAGE, immunoblotting, and enzyme measurements. We found both in vitro and in situ that the conventional kinesin, the microtubule-associated plus-end directed motor, was frequently associated with D+/+ heart mitochondria, but not with D–/– heart mitochondria, suggesting that the positioning of mitochondria in heart is a dynamic event involving the IF desmin, the molecular motor kinesin, and, most likely, the microtubules (MT) network. Furthermore, an increased capacity in energy production was found, as indicated by a threefold higher creatine kinase activity in heart mitochondria from D–/– compared to D+/+ mice. We also observed a significantly lower amount of cytochrome c in heart mitochondria from D–/– mice, and a relocalization of Bcl-2, which may indicate an apoptotic condition in the cell leading to the earlier reported pathological events, such as cardiomyocytes degeneration and calcinosis of the heart (Thornell et al., 1997).  相似文献   

2.
Activity of δ-aminolevulinic acid synthetase was measured in homogenates of flight muscles of the tobacco horn worm moth (Manduca sexta) during adult development. The activity in pupae prior to 15-days old is below the limit of detection. The activity in the 16–17-day-old pupae is minimal but it increases rapidly thereafter, reaches the highest level at the emergence of adult moths, and then drastically falls to a very low level within 18 h. The rise in activity prior to the adult emergence was inhibited by puromycin and actinomycin D. However, it was found that injected δ-aminolevulinic acid did not stimulate de novo synthesis of cytochrome c.  相似文献   

3.
In Krebs ascites-tumour cells, cytochrome c is segregated in the mitochondria and the level in microsomes could not be measured. At 22° in glucose–buffer Krebs cells synthesized a spectrum of proteins including cytochrome c. Mild osmotic shock in the presence of ribonuclease had little effect on incorporation of [14C]-leucine or [14C]valine into mixed mitochondrial protein but strongly inhibited synthesis of non-mitochondrial cytoplasmic proteins. Under these conditions, labelling of cytochrome c was also strongly inhibited. After pulse labelling of Krebs cells at 22° for 10min. the cytcchrome radioactivity found in mitochondria was higher than in microsomes. After addition of unlabelled amino acid as `chase' there was 137% increase in radioactivity of cytochrome c but only a 3% increase in radioactivity of whole-cell protein. It is concluded that the peptide chain of cytochome c is synthesized on cytoplasmic ribosomes. Mitochondria therefore do not have the character of self-replicating entities, but are formed by the cooperative function of messenger RNA of cytoplasmic ribosomes and, possibly, of intramitochondrial messenger derived from the mitochondrial DNA.  相似文献   

4.
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential–sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (ΔΨm) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of ΔΨm, and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.  相似文献   

5.
A recent report (Radi et al., J. Biol. Chem. 266:22028–22034, 1991) showed that rat heart mitochondria contain catalase. The protective role of mitochondrial catalase was tested by exposing heart or kidney mitochondria and mitoplasts to two oxidants (H2O2) or tert-butyl hydroperoxide, t-BOOH), estimating lipid peroxidation (as thiobarbituric acid-reactive substances, TBARS) and overall oxidative stress (as chemiluminescence). Additional controls included heart and kidney preparations from aminotriazole-treated (catalase-depleted) rats. Both oxidants increased TBARS in catalase-free preparations to similar extents over their respective controls (between 200 to 350%). In catalase-containing preparations, H2O2 lipid peroxidation increased by only 40 to 96% over controls. Similar qualitative results were obtained when measuring chemiluminescence. The catalytic role of cytochrome c in mitochondrial lipid peroxidation was investigated by exposing either control or cytochrome-c-depleted kidney mitoplasts (catalase free) to either H2O2 or t-BOOH. Hydrogen-peroxide-dependent mitochondrial lipid peroxidation varied with cytochrome c concentrations, remaining close to controls when cytochrome c concentration decreased by 66%, even though there was no catalase present. Tert-butyl hydroperoxide-dependent lipid peroxidation was less affected by cytochrome c remaining 2.3-fold above controls under the same conditions, suggesting that organic peroxides are more likely to remain in the less polar membrane environment being decomposed by heme or nonheme iron imbedded in the inner mitochondrial membrane. Chemiluminescence was less affected by cytochrome c depletion. Comparing control and cytochrome-c-deficient mitochondria, chemiluminescence was 1.7-fold and 2.8-fold higher when control preparations were challenged with t-BOOH or H2O2, respectively.  相似文献   

6.
Microsomes were obtained from the zona glomerulosa of the bovine adrenal cortex. Contamination of microsomes with other cellular organelles was examined using various marker enzymes and the electron microscope. Distribution of cytochrome P-450 in the zona glomerulosa was studied using various fractions including microsomes, described above, and mitochondria. The amount of cytochrome P-450 in mitochondria and in microsomes was determined to be 0.73 and 0.32 nmol/mg protein, respectively. The CO difference spectrum was affected not only by the concentration of added deoxycholate but also by the incubation time after addition. Approximately 40–50% of cytochrome P-450 in the samples was converted to cytochrome P-420 within 20–30 sec of incubation with deoxycholate.The content of RNA, phospholipids, and cytochromeb 5 in microsomes obtained from the zona glomerulosa is also evaluated in comparison to that in microsomes obtained from the zona fasciculoreticularis.  相似文献   

7.
Bax/Bak activation and cardiolipin peroxidation are essential for cytochrome c release during apoptosis, yet, the link between them remains elusive. We report that sequence of events after exposure of mouse embryonic fibroblast (MEF) cells to actinomycin D followed the order: Bax translocation → superoxide production → cardiolipin peroxidation. Genetic ablation of Bax/Bak inhibited actinomycin D induced superoxide production and cardiolipin peroxidation. Rotenone caused robust superoxide generation but did not trigger cardiolipin peroxidation in Bax/Bak double knockout MEF cells. This suggests that, in addition to participating in ROS generation, Bax/Bak play another specific role in cardiolipin oxidation. In isolated mitochondria, recombinant Bax enhanced succinate induced cardiolipin oxidation and cytochrome c release. Mitochondrial peroxidase activity, likely involved in cardiolipin peroxidation, was enhanced upon incubation with recombinant Bax. Thus, cardiolipin peroxidation may be causatively and time-dependently related to Bax/Bak effects on ROS generation and peroxidase activation of cytochrome c.  相似文献   

8.
Studies on brain mitochondria are complicated by the regional, cellular, and subcellular heterogeneity of the central nervous system. This study was performed using synaptic and nonsynaptic mitochondria obtained from cortex, hippocampus, and striatum of male Sprague-Dawley rats (3 months old). Ubiquinone content, detected by HPLC analysis, was about 1.5 nmol/mg protein with an approximate CoQ9/CoQ10 molecular ratio of 2:1. The activities of several respiratory chain complexes were also studied (succinate-cyt.c reductase, NADH-cyt.c reductase, succinate-DCIP, ubiquinol2-cyt.c reductase, and cytochrome oxidase), and generally found to be higher in mitochondria from cortex than from other regions. Study of the activities of some of these enzymes vs. 1/T (Arrhenius plots) showed a straight line with an activation energy between 7 and 10 kcal/mol in all the three areas considered. Only CoQ2H2-cyt.c reductase activity revealed a biphasic temperature dependence. Also anisotropy (as fluorescence polarization) of the hydrophobic probe DPH showed a deviation from linearity; the break points for both enzymatic activity and anisotropy were found at about 23–24°C.  相似文献   

9.
1. Analytical differential centrifugation of rat heart homogenates revealed a single population of mitochondria and microperoxisomes. Using cytochorme c oxidase, malate dehydrogenase and amine oxidase as mitochondrial marker enzymes, the -value of mitochondria was estimated to = 10326 ± 406 S (average for the three marker enzymes). The −s-value of microperoxisomes was found to be −s = 1381 ± 40 S using catalase as the marker enzyme. The −s-value for the two orgenelles did not change significantly when the isoosmotic sucrose medium was substituted by an isoosmotic mannitol medium. 2. Analytical differential centrifugation revealed a polydispercity of the microsomal fraction using glucose-6-phosphatase and NADPH-cytochrome c reductase as the marker enzymes. The -values were found to be −sH1 = 1569 ± 412 S (NADPH-cytochrome c reductase), (glucose-6-phosphatase) and (NADPH-cytochrome c reductase and glucose-6-phosphatase). The recovery of marker enzymes in the isolated subcellular fractions was in the range of 84–94%. 3. When the mitochondrial and microperoxisomal fractions were subjected to isopycnic gradient centrifugation, using a self-generating gradient of polyvinylpyrrolidone-coated colloidal silica particles (Percoll) in 0.25 M sucrose medium, buoyant densities of 1.10 g/cm3 (main fraction of mitochondria) and 1.06 g/cm3 (main fraction of microperixosomes) were obtained. The density gradient centrifugation separated microperoxisomes from contaminating lysosomes of high specific activity in acid phosphatase. A value 1.04 g/cm3 was foung for the density of the microsomal fraction. 4. Based on the estimated -values, an optimal procedure is described for the isolattion of mitochondrial and microperoxisomal fractions from rat heart muscle.  相似文献   

10.
1. Rat liver mitochondria were separated on the basis of their sedimentation coefficients in an iso-osmotic gradient of Ficoll–sucrose by rate zonal centrifugation. The fractions (33, each of 40ml) were collected in order of decreasing density. Fractions were analysed by spectral analysis to determine any differences in the concentrations of the cytochromes and by enzyme analyses to ascertain any differences in the activities of NADH dehydrogenase, succinate dehydrogenase and α-glycerophosphate dehydrogenase. 2. When plotted as% of the highest specific concentration, the contents of cytochrome a+a3 and cytochrome c+c1 were constant in all fractions but cytochrome b was only 65% of its maximal concentration in fraction 7 and increased with subsequent fractions. As a result, the cytochrome b/cytochrome a+a3 ratio almost doubled between fractions 7 and 25 whereas the cytochrome c+c1/cytochrome a+a3 ratio was unchanged. 3. Expression of the dehydrogenase activities as% of highest specific activity showed the following for fractions 6–26: NADH dehydrogenase activity remained fairly constant in all fractions; succinate dehydrogenase activity was 62% in fraction 6 and increased steadily to its maximum in fraction 18 and then decreased; the activity of α-glycerophosphate dehydrogenase was only 53% in fraction 6 and increased slowly to its peak in fractions 22 and 24. 4. These differences did not result from damaged or fragmented mitochondria or from microsomal contamination. 5. These results demonstrate that isolated liver mitochondria are biochemically heterogeneous. The importance of using a system for separating biochemically different mitochondria in studies of mitochondrial biogenesis is discussed.  相似文献   

11.
A non-traumatic electroporation procedure was developed to load exogenous cytochrome c into the cytoplasm and to study the apoptotic effect of cytochrome c, its K72-substitued mutants and “yeast → horse” hybrid cytochrome c in living WEHI-3 cells. The minimum apoptosis-activating intracellular concentration of horse heart cytochrome c was estimated to be 2.7 ± 0.5 μM (47 ± 9 fg/cell). The equieffective concentrations of the K72A-, K72E- and K72L-substituted mutants of cytochrome c were five-, 15- and 70-fold higher. The “yeast → horse” hybrid created by introducing S2D, K4E, A7K, T8K, and K11V substitutions (horse protein numbering) and deleting five N-terminal residues in yeast cytochrome c did not evoke apoptotic activity in mammalian cells. The apoptotic function of cytochrome c was abolished by the K72W substitution. The K72W-substituted cytochrome c possesses reduced affinity to the apoptotic protease activating factor-1 (Apaf-1) and forms an inactive complex. This mutant is competent as a respiratory-chain electron carrier and well suited for knock-in studies of cytochrome c-mediated apoptosis.  相似文献   

12.
The capacity of white adipose tissue mitochondria to support a high beta-oxidative flux was investigated by comparison to liver mitochondria. Based on marker enzyme activities and electron microscopy, the relative purity of the isolated mitochondria was similar thus allowing a direct comparison on a protein basis. The results confirm the comparable capacity of adipose tissue and liver mitochondria for palmitoyl-carnitine oxidation. Relative to liver, both citrate synthase and α-ketoglutarate dehydrogenase were increased 7.87- and 10.38-fold, respectively. In contrast, adipose tissue NAD-isocitrate dehydrogenase was decreased (2.85-fold). Such modifications in the citric acid cycle are expected to severely restrict citrate oxidation in porcine adipose tissue. Except for cytochrome c oxidase, activities of the enzyme complexes comprising the electron transport chain were not significantly different. The decrease in adipose cytochrome c oxidase activity could partly be attributed to a decreased inner membrane as suggested by lipid and enzyme analysis. In addition, Western blotting indicated that adipose and liver mitochondria possess similar quantities of cytochrome c oxidase protein. Taken together these results indicate that not only is the white adipose tissue protoplasm relatively rich in mitochondria, but that these mitochondria contain comparable enzymatic machinery to support a relatively high beta-oxidative rate.  相似文献   

13.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

14.
An N-terminally modified form of the Arabidopsis NADPH–cytochrome P450 ATR2 (ATR2mod) was expressed from the tactac promoter in Escherichia coli to obtain high yields of the enzyme. The N-terminal modification eliminates the predicted chloroplast transit peptide of ATR2 allowing for more efficient expression. ATR2mod was purified from membrane extracts using a 2′,5′-ADP–agarose affinity column. The specific activity of the purified ATR2mod for cytochrome c reduction was 9.4 μmol min−1 mg−1 and the Km for cytochrome c reduction was 15 ± 2 μM. The purified NADPH–cytochrome P450 reductase was able to support function of CYP79B2.  相似文献   

15.
Mitochondrial cytochromes c and c 1 have long been considered indistinguishable from a potentiometric point of view. By combining rapid scan spectrometry to run redox titrations with numerical analysis using a generalized Nernst equation, it was possible to resolve cytochrome c and c 1 midpoint potentials in yeast and mushroom mitochondria. In the reported work, this approach has been applied to purified mitochondria from higher plant tissue (Solanum tubersosum L.). The rapid scan spectrometric technique provided clear evidence of reversible base line changes monitored by redox potential changes. The basic mechanism responsible for this modification in the mitochondria optical properties remains to be defined. However, we suggest that this phenomenon could play a regulatory role in the overall electron transfer process. It is necessary to make an initial correction of the recorded spectra prior to numerical analysis. When this is done, two midpoint potential values are resolved by running analyses in the 550–555 nm range: 283±3 m V and 213±11 m V. They are identical to the ones found for cytochromes c and c 1 in yeast and mushroom mitochondria. The individual difference bands were resolved by running analyses at each wavelength of the corrected spectra, the resolved midpoint potentials being kept fixed. This approach, the only one to date which has succeeded in resolving mitochondrial cytochrome c and c 1 midpoint potentials, is discussed with respect to other methods. Limitations are pointed out.Abbreviation Mops morpholinopropane sulfonate  相似文献   

16.
Cytochrome oxidase was purified twentyfold from mitochondria of seedlings of wheat genotypes 28, 31 MS, and 31 MS/28. The enzyme of the hybrid exceeded in activity the parental enzymes. Mixtures of cytochrome oxidase of the parents exhibited complementation in that they approached the activity of the hybrid cytochrome oxidase. Hybrid mitochondria also exhibited heterosis in NADH: cytochrome c reductase activity. Complementation by parent mitochondria was observed for this enzyme also. The Michaelis constant of cytochrome oxidase and NADH: cytochrome reductase was markedly less in the hybrid and the mixture than in the parents. Difference spectra revealed the following: strain 28 had cytochromes a and b but was deficient in cytochrome c; strain 31 MS had cytochromes b and c but no a; the hybrid had all three cytochromes, as did the mixture. The relationship of cytochromes to heterosis and complementation is considered.This work was supported by DeKalb AgResearch, Inc.  相似文献   

17.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
Summary A nuclear gene mutant of Neurospora crassa designated cyb-3 is deficient in cytochrome b and coenzyme QH2-cytochrome c reductase. Nearly normal when grown at 25°C, the strain expresses a mutant phenotype at 38°C. Mitochondria from cybr-3 mycelium, which has undergone 3–4 mass doublings at the elevated temperature, possess 3-fold less cytochrome b, 2-fold more cytochrome, c, 5-fold less coenzyme QH2-cytochrome c reductase activity, and require 3-fold less antimycin A per milligram of protein to inhibit NADH oxidation than do wild type mitochondria. The activity of coenzyme QH2-cytochrome c reductase declines rather slowly in cultures of cyb-3 transferred to 38° C, and the in vitro thermostability of the enzyme is very similar in wild type and mutant mitochondria. Therefore, the mutation may decrease synthesis or impair integration into the membrane of cytochrome b and perhaps other proteins of the enzyme complex.Contribution No. 1294-j, Division of Biology, Agricultural Experiment Station, Kansas State University, Manhattan, Kansas.  相似文献   

19.
20.
1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号