首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. Recently we have shown that c-Myb is degraded in response to Wnt-1 stimulation via a pathway involving TAK1 (TGF-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK and HIPK2 bind directly to c-Myb and phosphorylate c-Myb at multiple sites, inducing its ubiquitination and proteasome-dependent degradation. The mammalian myb gene family contains two members in addition to c-myb, A-myb, and B-myb. Here, we report that the Wnt-NLK pathway also inhibits A-Myb activity, but by a different mechanism. As in the case of c-Myb, both NLK and HIPK2 bound directly to A-Myb and inhibited its activity. NLK phosphorylated A-Myb, but did not induce A-Myb degradation. Overexpression of NLK inhibited the association between A-Myb and the coactivator CBP, thus, blocking A-Myb-induced trans-activation. The kinase activity of NLK is required for the efficient inhibition of the association between A-Myb and CBP, although the kinase-negative form of NLK also partly inhibits the interaction between A-Myb and CBP. Furthermore, NLK induced the methylation of histone H3 at lysine-9 at A-Myb-bound promoter regions. Thus, the Wnt-NLK pathway inhibits the activity of each Myb family member by different mechanisms.  相似文献   

2.
3.
In follicular lymphoma, bcl-2 is translocated to the immunoglobulin heavy chain locus leading to deregulation of bcl-2 expression. We examined the role of Myb proteins in the regulation of bcl-2 expression in lymphoma cells. We showed that A-Myb up-regulates bcl-2 promoter activity. Northern and Western analyses demonstrated that A-Myb was expressed in the DHL-4 t(14;18) cell line. In t(14;18) cells and mature B cells, A-Myb up-regulated bcl-2 expression, whereas B- and c-Myb had little effect on bcl-2 gene expression. Deletion analysis of the bcl-2 5'-region identified a region responsive to A-Myb in t(14;18) cells. A potential binding site for the Cdx homeodomain proteins was located in this sequence. Analysis of the A-Myb-responsive region by UV cross-linking experiments revealed that a 32-kDa protein formed a complex with this region, but direct binding by Myb proteins could not be demonstrated. A-Myb could be recovered along with Cdx2 when nuclear extracts were passed over the Cdx site. Mutagenesis of the Cdx binding site abolished binding by the 32-kDa protein and significantly reduced the ability of A-Myb to induce bcl-2 expression. A strong induction of bcl-2 P2 promoter activity was observed in cotransfection studies of DHL-4 cells with the A-Myb and Cdx2 expression vectors, and increased endogenous Bcl-2 protein expression was observed in B cells transfected with A-Myb and/or Cdx2 expression constructs.  相似文献   

4.
5.
6.
7.
8.
The v-myb oncogene of avian myeloblastosis virus (AMV) differs from its normal cellular counterpart by a truncation at both its amino and carboxyl termini and by a substitution of 11 amino acid residues. We had previously shown that v-myb-containing AMV, in the presence of basic fibroblast growth factor, transformed chicken neuroretina (CNR) cells. To understand the mechanism of c-myb activation, we have tested whether avian retroviruses that express the full-length c-Myb are also active on CNR cells. We have found that c-Myb, like v-Myb, strongly increases the basic fibroblast growth factor response of CNR cells and that these c-myb-expressing cells are able to grow in soft agar in the presence of the growth factor. We have also found that, in contrast to normal or v-myb-expressing AMV-transformed CNR cells, c-Myb-transformed cells express mim-1, a granulocyte-specific gene. However, normal v-Myb- and c-Myb-expressing CNR cells all express the pax-QNR gene, a newly described paired and homeobox-containing gene specifically expressed in the neuroretina. We conclude that, in contrast to what has been described for hematopoietic cells, overexpression of c-Myb is sufficient to activate gene expression and to induce an abnormal behavior of CNR cells.  相似文献   

9.
10.
The molecular mechanisms underlying the growth inhibition induced by interferon-alpha (IFN-alpha) in B16 murine melanoma cells were investigated. IFN-alpha did not induce cell apoptosis, but strongly interfered with the synthesis of basic fibroblast growth factor (bFGF), which acts as an autocrine growth factor in this system. Inhibition of bFGF synthesis was observed at the same concentrations (50-500 pM, 10-100 U/ml) of IFN-alpha able to induce growth arrest of B16 melanoma cells. Although the synthesis of acidic (a)FGF was only slightly affected by IFN-alpha, the cytokine induced release of an aFGF-related low-molecular-weight peptide, which was able to interfere with bFGF binding to surface receptors. Thus, the molecular mechanisms of IFN-alpha activity on melanoma cells include a specific modulation of the bFGF autocrine circuit.  相似文献   

11.
12.
13.
Activin A can induce erythroid differentiation, whereas basic fibroblast growth factor (bFGF) can maintain the undifferentiated status of erythroid progenitors. How these two factors together can affect the regulation of erythroid differentiation in hematopoietic cells has not been elucidated. This study demonstrates that bFGF antagonizes activin A-mediated growth inhibition and hemoglobin (Hb) synthesis in K562 cells. Analyses of mitogen-activated protein kinases revealed that activin A-induced p38 phosphorylation and inhibited ERK1/2 phosphorylation. In contrast, bFGF worked antagonistically to induce ERK1/2 phosphorylation and inhibited p38 phosphorylation in K562 cells. Furthermore, co-treatment of cells with activin A and bFGF decreased p38 phosphorylation and increased ERK1/2 phosphorylation. SB203580 inhibition of p38 activity eliminated activin A-mediated growth inhibition and Hb synthesis, whereas U0126 inhibition of ERK1/2 activity augmented the effects of activin A on K562 cells. These results suggest that bFGF can negatively modulate p38 and positively modulate ERK1/2 to antagonize activin A-mediated growth inhibition and Hb synthesis in K562 cells.  相似文献   

14.
We studied the different potentials of a secreted and a nonsecreted member of the fibroblast growth factor (FGF) family to induce autocrine growth stimulation in human adrenal cortex carcinoma cells (SW-13). These epithelial cells express basic FGF (bFGF) cell surface receptors, and picomolar concentrations of bFGF suffice to induce anchorage-independent growth. The requirement for exogenously added bFGF contrasts with the intracellular storage of biologically active bFGF in SW-13 cells greater than 10,000-fold in excess of the concentration needed to stimulate anchorage independent growth. To study whether the expression of a secreted FGF would alter the growth phenotype of these cells, we transfected them with an expression vector coding for the Kaposi-fgf (K-fgf) oncogene. In contrast to controls, K-fgf-transfected cells secrete significant amounts of biologically active K-fgf protein into the growth media, show up to 50-fold increased colony formation in soft agar, and grow into rapidly progressing, highly vascularized tumors in athymic nude mice. A reversible inhibition of the autocrine growth stimulation in vitro is brought about by the polyanionic compound suramin. We conclude that FGF has to be released from SW-13 cells to function fully as a growth stimulator in vitro and in vivo.  相似文献   

15.
Growth factor over-production by responsive cells might contribute to their autonomous proliferation as well as their acquisition of a transformed phenotype in culture. Basic fibroblast growth factor (bFGF) has been shown to induce transient changes in cell behavior that resemble those encountered in transformed cells. In addition, several types of human tumor cells have been shown to produce bFGF. To determine directly the role that bFGF might play in the induction of the transformed phenotype, we have introduced a human bFGF cDNA expression vector into baby hamster kidney-derived (BHK-21) fibroblasts. One of the BHK transfectants, termed clone 19, expresses the bFGF mRNA and produces biologically active bFGF that accumulates to a high concentration inside the cells. These properties correlate with the ability of the cells to grow in serum-free medium without the addition of exogenous bFGF. Clone 19 cells also proliferated in soft agar, indicating that constitutive expression of the bFGF gene results in a loss of anchorage-dependent growth.  相似文献   

16.
The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling via a pathway involving TAK1 (transforming growth factor-beta-activated kinase 1), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK directly binds to c-Myb, which results in the phosphorylation of c-Myb at multiple sites, and induces its ubiquitination and proteasome-dependent degradation. Here, we report that Fbxw7, the F-box protein of an SCF complex, targets c-Myb for degradation in a Wnt-1- and NLK-dependent manner. Fbxw7alpha directly binds to c-Myb via its C-terminal WD40 domain and induces the ubiquitination of c-Myb in the presence of NLK in vivo and in vitro. The c-Myb phosphorylation site mutant failed to interact with Fbxw7alpha, suggesting that the c-Myb/Fbxw7alpha interaction is enhanced by NLK phosphorylation of c-Myb. Treatment of M1 cells with Fbxw7 small interfering RNA (siRNA) rescued the Wnt-induced c-Myb degradation and also the Wnt-induced inhibition of cell proliferation. NLK bound to Cul1, a component of the SCF complex, while HIPK2 interacted with both Fbxw7alpha and Cul1, suggesting that both kinases enhance the c-Myb/SCF interaction. In contrast to c-Myb, the v-myb gene product (v-Myb) encoded by the avian myeloblastosis virus was resistant to NLK/Fbxw7alpha-induced degradation. Thus, Fbxw7 is an E3 ubiquitin ligase of c-Myb, and the increased c-Myb levels may contribute, at least partly, to transformation induced by mutation of Fbxw7.  相似文献   

17.
18.
Nerve growth factor (NGF) and acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) induce neurite outgrowth from the rat pheochromocytoma cell line, PC12. The neurites induced by these three factors are stable for up to a month in cell culture in the continued presence of any of the above growth factors. bFGF (ED50 = 30 pg/ml) is 800 fold more potent in stimulating neurite outgrowth than aFGF (ED50 = 25 ng/ml) and 260 fold more potent than NGF (ED50 = 8 ng/ml). While the neurotropic activities of aFGF and NGF are potentiated by heparin, that of bFGF is both partially inhibited or stimulated, depending upon the concentration of bFGF. Radioreceptor binding experiments show that aFGF and bFGF bind to a common binding site on the PC12 cell surface. Affinity labeling studies demonstrate a single receptor with an apparent molecular weight of 145,000 daltons, which corresponds to the high molecular weight receptor identified in BHK-21 cells. NGF does not appear to compete with aFGF or bFGF for binding to the receptor. Heparin blocked the binding of bFGF to the receptor but had only a small inhibitory effect on the binding of aFGF to the receptor. Thus, it appears that heparin inhibition of the neurotropic effects of bFGF occurs, at least in part, by impairing the interaction of bFGF with the receptor, while having little effect on that of aFGF. The stimulatory effects of heparin on the neurotropic activity of aFGF, bFGF, and NGF may occur through a site not associated with the respective cellular receptor for the growth factors.  相似文献   

19.
Satellite cells represent a heterogeneous population of stem and progenitor cells responsible for muscle growth, repair and regeneration. We investigated whether c-Myb could play a role in satellite cell biology because our previous results using satellite cell-derived mouse myoblast cell line C2C12 showed that c-Myb was expressed in growing cells and downregulated during differentiation. We detected c-Myb expression in activated satellite cells of regenerating muscle. c-Myb was also discovered in activated satellite cells associated with isolated viable myofiber and in descendants of activated satellite cells, proliferating myoblasts. However, no c-Myb expression was detected in multinucleated myotubes originated from fusing myoblasts. The constitutive expression of c-Myb lacking the 3′ untranslated region (3′ UTR) strongly inhibited the ability of myoblasts to fuse. The inhibition was dependent on intact c-Myb transactivation domain as myoblasts expressing mutated c-Myb in transactivation domain were able to fuse. The absence of 3′ UTR of c-Myb was also important because the expression of c-Myb coding region with its 3′ UTR did not inhibit myoblast fusion. The same results were repeated in C2C12 cells as well. Moreover, it was documented that 3′ UTR of c-Myb was responsible for downregulation of c-Myb protein levels in differentiating C2C12 cells. DNA microarray analysis of C2C12 cells revealed that the expression of several muscle-specific genes was downregulated during differentiation of c-Myb-expressing cells, namely: ACTN2, MYH8, TNNC2, MYOG, CKM and LRRN1. A detailed qRT-PCR analysis of MYOG, TNNC2 and LRRN1 is presented. Our findings thus indicate that c-Myb is involved in regulating the differentiation program of myogenic progenitor cells as its expression blocks myoblast fusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号