首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In chronic po?kilothermic pontile cats whose central temperature is artificially regulated, the quantity of paradoxical sleep (PS), its ultradian periodicity and the duration of PS episodes are dependent upon central temperature level and periodicity.  相似文献   

2.
The current study assessed sympathetic neuronal and vasomotor responses, total body oxygen consumption, and sensory thermal perception to identify thermoregulatory differences in younger and older human subjects during core cooling. Cold fluid (40 ml/kg, 4 degrees C) was given intravenously over 30 min to decrease core temperature (Tc) in eight younger (age 18-23) and eight older (age 55-71) individuals. Compared with younger subjects, the older subjects had significantly lower Tc thresholds for vasoconstriction (35.5 +/- 0.3 vs. 36.2 +/- 0.2 degrees C, P = 0.03), heat production (35.2 +/- 0.4 vs. 35.9 +/- 0.1 degrees C, P = 0.04), and plasma norepinephrine (NE) responses (35.0 vs. 36.0 degrees C, P < 0.05). Despite a lower Tc nadir during cooling, the maximum intensities of the vasoconstriction (P = 0.03) and heat production (P = 0.006) responses were less in the older compared with the younger subjects, whereas subjective thermal comfort scores were similar. Plasma NE concentrations increased fourfold in the younger but only twofold in the older subjects at maximal Tc cooling. The vasomotor response for a given change in plasma NE concentration was decreased in the older group (P = 0.01). In summary, aging is associated with 1) a decreased Tc threshold and maximum response intensity for vasoconstriction, total body oxygen consumption, and NE release, 2) decreased vasomotor responsiveness to NE, and 3) decreased subjective sensory thermal perception.  相似文献   

3.
The P-chiral stereo-defined phosphorothioate groups have been introduced into all of the four internucleotide positions of d(T(PS1)C(PS2)C(PS3)C(PS4)C) (PSn = phosphorothioate group), and among the 16 possible diastereomers of PS-d(TC(4)), 10 stereomers have been synthesized to investigate the effects of the sense of the P-chirality upon the structure and stability of the i-motif structure. The temperature dependence of circular dichroism spectra showed that the melting temperature (T(m)) of the [all R(p)]-PS-d(TC(4)) i-motifs was 31 degrees C, identical to that of the parent oligomer, PO-d(TC(4)), while that of the [all S(p)]-PS-d(TC(4)) i-motif was largely decreased by 11 degrees C. Single substitution of R(p) with S(p) caused a decrease of T(m) by 3-4 degrees C at positions of PS1, PS2, and PS3 and by 1 degrees C at that of PS4, showing the additive property of the T(m) suppression. The comparison of the NOESY spectra between [all R(p)]-PS-, [all S(p)]-PS-, and PO-d(TC(4)) showed that intraresidual H6-H3' and H2' '-H4' NOE cross-peaks of the all S(p) isomer are weaker than those of the all R(p) isomer and PO-d(TC(4)), indicating the change in the C3'-endo conformation and glycosidic bond angle. The structural alternation for the i-motif formed by [all S(p)]-PS-d(TC(4)) is also suggested by the chemical shift differences of C2/C3/C4 H2'and H4' protons from those of [all R(p)]-PS-d(TC(4)) and PO-d(TC(4)). These results suggest that the S(p) configuration at phosphorus of the phosphorothioate linkage changes the sugar-phosphorothioate conformation and intermolecular interaction in the narrow groove, leading to the destabilization of the i-motif structure.  相似文献   

4.
In this study we investigated the effect of heat on the proteins of the particulate fraction (PF) of HeLa S3 cells using electron spin resonance (ESR) and thermal gel analysis (TGA). ESR detects overall conformational changes in proteins, while TGA detects denaturation (aggregation due to formation of disulfide bonds) in specific proteins. For ESR measurements the -SH groups of the proteins were labelled with a maleimido bound spin label (4-maleimido-tempo). The sample was heated inside the ESR spectrometer at a rate of 1 degree C/min. ESR spectra were made every 2-3 degrees C between 20 degrees C and 70 degrees C. In the PF of untreated cells conformational changes in proteins were observed in three temperature stretches: between 38 and 44 degrees C (transition A, TA); between 47 and 53 degrees C (transition B, TB); and above 58 degrees C (transition C, TC). With TGA, using the same heating rate, we identified three proteins (55, 70, and 90 kD) which denatured during TB. No protein denaturation was observed during TA, while during TC denaturation of all remaining proteins in the PF occurred. When the ESR and TGA measurements were done with the PF of (heat-induced) thermotolerant cells, TA was unchanged while TB and TC started at higher temperatures. The temperature shift for the onset of these transitions correlated with the degree of thermotolerance that was induced in the cells. These results suggest that protection against heat-induced denaturation of proteins in the PF is involved in heat induced thermotolerance.  相似文献   

5.
Mozambique tilapia Oreochromis mossambicus acclimated to 27 degrees C were then held at 19, 23, 27 (control), 31 and 35 degrees C, and were examined for non-specific cellular and humoral responses after 12-96 h. Total leucocyte count decreased significantly when fish were transferred to 19 and 23 degrees C after 48 and 96 h, and when transferred to 35 degrees C over 12-96 h, respectively. Respiratory burst decreased significantly when fish were transferred to 19, 31 and 35 degrees C over 24-96 h, whereas phagocytic activity and phagocytic index decreased significantly when fish were transferred to low temperatures (19 and 23 degrees C) and high temperatures (31 and 35 degrees C) over 12-96 h. Lysozyme activity decreased significantly when fish were transferred to 19 degrees C after 12-96 h, but increased significantly when transferred to 31 and 35 degrees C over 48-96 h. Alternative complement pathway (ACH(50)) also decreased significantly when transferred to 19 and 23 degrees C after 12h, but increased significantly when transferred to 31 and 35 degrees C after 24h. In another experiment, tilapia reared at 27 degrees C were injected intraperitoneally with Streptococcus iniae at a dose of 1 x 10(7)colony-forming units (cfu)fish(-1), and then reared onward at water temperatures of 19, 23, 27 (control), 31 and 35 degrees C. Over 48-168 h, the cumulative mortality of S. iniae-injected fish held in 19 and 35 degrees C was significantly higher than that of injected-fish held in 23, 27 and 31 degrees C. It is concluded that transfer of tilapia O. mossambicus from 27 degrees C to low temperatures (19 and 23 degrees C) after 12h, and transfer of fish from 27 degrees C to high temperatures (31 and 35 degrees C) reduced their immune capability. Moreover, tilapia under temperature stress at 19 and 35 degrees C from 27 degrees C decreased its resistance against S. iniae.  相似文献   

6.
以叶绿素快相荧光动力学曲线(OJIP)为探针,探讨了高温胁迫对高产小麦品系01-35灌浆后期光系统Ⅱ(PSⅡ)功能的影响.结果表明,在37 ℃~43 ℃范围内,随温度升高QA还原程度和还原速率增大,至43 ℃时分别比室温下增加了23.89%和24.09%,表明QA→QB的电子传递受到抑制;43 ℃时PSⅡ的电子受体库降至室温下的47.4%,表明高温胁迫伤害了PSⅡ受体库;而PSⅡ供体侧未受到影响.当温度达到46 ℃时,QA还原程度和还原速率分别比室温下增加了13.95%和20.48%,但比43 ℃时显著下降,而PSⅡ电子受体库与43 ℃时相比无显著变化,表明46 ℃时PSⅡ供体侧受到伤害.与对照品种鲁麦14相比,高温胁迫下高产小麦的捕光色素复合体仍能捕获较多的光能,而且将捕获的光能更多的用于电子传递,表明高产小麦的捕光色素复合体及电子传递体耐受高温的能力较强,能够维持较高的电子传递能力.  相似文献   

7.
The effect of 4 Hz EMF treated physiological solution (PS) on acetylcholine (Ach) sensitivity of the snail neuron was studied. The 4 Hz EMF treated normal PS at room temperature (23 degrees C) has a depressing effect on Ach induced current, while in cold medium (12 degrees C) this effect disappeared. EMF treated, ouabain containing, K-free PS elevates the Ach-induced current at room temperature. It is suggested that the metabotropic effect of EMF treated PS is due to the activation of cGMP-dependent Na:Ca exchange, leading to the decrease of the number of functional active receptors in the membrane, through Na-K pump-induced cell shrinkage, and to increase the receptors affinity to Ach, as the result of decrease of intracellular Ca concentration.  相似文献   

8.
The vascular response of the tail to local warming was investigated in urethan-anesthetized rats whose colonic temperature was maintained at 39.5 degrees C with an intravenous thermode at an ambient temperature of 23 degrees C. The tail, covered with thin latex tubing, was immersed in temperature-controlled water initially kept at 35 degrees C. The tail was warmed by raising the water bath temperature from 35 to 44 degrees C at a constant rate. Tail blood flow (BF), mean arterial blood pressure (BP), and tail skin temperature (Tsk) were measured before and during the local warming. Tail vascular conductance (VC) was computed as 100 x tail BF/BP. When Tsk exceeded 37 degrees C, tail BF and VC significantly decreased from the levels at Tsk of 35 degrees C, and significant reductions in tail BF and VC occurred until Tsk reached 42 degrees C. Surgical deafferentation of the tail, chemical sympathectomy with 6-hydroxydopamine (100 mg/kg), and alpha-blockade with phentolamine (7 or 40.1-45.5 mg/kg) or phenoxybenzamine (5 mg/kg) failed to stop the decrease in tail BF and VC during the local warming. These results suggest that a reflex via the central nervous system and the alpha-adrenergic sympathetic nervous system is not indispensable for heat-induced vasoconstriction (HIVC). It is therefore assumed that, at least in the rat's tail, HIVC predominantly originates from a local vascular response to high temperature.  相似文献   

9.
The vasomotor response of the tail of the albino rat to total-body heating and cooling was studied by skin-temperature recording and plethysmography with the tail at 25 degrees C air temperature. Tail vasodilation started at core temperatures lightly above 37 degrees C and increased to a core temperature up to about 39 degrees C. During cooling of warm rats, tail vasoconstriction started at significantly higher levels of core temperature than the values at which vasodilation appeared when the rat was warmed.  相似文献   

10.
Pulmonary vasomotor actions of histamine and the possible relationship of histamine to hypoxic pulmonary vasconstriction were studied in anaesthetized cats with one lobe of lung perfused at constant flow and in isolated perfused rat and ferret lungs. In the cat histamine caused dilatation, biphasic responses and constriction with increasing doses. Histamine induced dilatation was better demonstrated during hypoxic vasoconstriction and was reduced by an H2 histamine antagonist; constriction with histamine was abolished by an H1 antagonist. Histamine also caused both vasodilatation and vasoconstriction in ferret lungs. A mast cell stabilizing agent had no effect on hypoxic pulmonary vasoconstriction in cats or rats. This response was unaffected in cats but greatly reduced in rats and ferrets by cyproheptadine, a combined histamine and 5-hydroxy-tryptamine inhibitor. It was unaffected in cats but abolished in ferrets an H1 histamine inhibitor. It was again unaffected in cats but greatly reduced in rats and ferrets by an H2 histamine inhibitor. These species differences may reflect differences in mechanism but more probably reflect non-specific effects of the inhibitors in certain circumstances. However, when drugs nearly abolished hypoxic vasoconstriction, ATP still caused vasoconstriction.  相似文献   

11.
The intracerebroventricular (i.c.v.) administration of arginine vasopressin (AVP), in the febrile rat elicits an antipyresis at cold, warm and neutral ambient temperatures. These experiments were conducted, therefore, to elucidate the thermoregulatory effector mechanisms responsible for this antipyretic effect. At 25 degrees C, AVP-induced antipyresis was mediated by tail skin vasodilation while metabolic rate was unaffected. At 4 degrees C, the antipyresis produced by AVP was approximately double that seen at 25 degrees C. This effect appeared to be mediated exclusively by inhibition of heat production since the metabolic rate decreased markedly following AVP. This antipyresis at 4 degrees C was accompanied by cutaneous vasoconstriction. At 32 degrees C, neither vasomotor tone, metabolic rate nor evaporative heat loss could be shown to contribute to the small antipyretic effect elicited by AVP. We conclude from these data that i.c.v. AVP is producing antipyresis by affecting the febrile body temperature set-point mechanism since the thermoregulatory strategy to lose heat varies at different ambient temperatures and the decrease in body temperature cannot be shown to be due to changes in a single effector mechanism.  相似文献   

12.
With the aim of evaluating the effect of interaction between physical training or exercise only during pregnancy and thermal stress on oxidative stress, and antioxidant mechanism sedentary pregnant rats (PS), exercised pregnant rats only during pregnancy (PE) and trained rats submitted to also exercise during pregnancy (PT) were compared (N=63). Exercise sessions consisted of swimming at 80% of maximal work load supported into water at 28 degrees C (hypothermia, PS 28, PE28, PT28) or 35 degrees C (thermal neutrality, PS35, PE35, PT35) or 39 degrees C (hyperthermia, PS39, PE39, PT39), for 30 min. The initial body weight in all groups of rats was from 177 to 207 g. On the 20th day of pregnancy, 24 h after the last immersion or swimming session venous blood was collected to determine oxidative stress. Plasma concentrations of means malondialdehyde (MDA) values measured as thiobarbituric acid reactive substances (TBARS); total glutathione (GSH) and vitamin E were determined. The oxidative stress index was calculated from the ratio TBARS/GSH and TBARS/Vitamin E. TBARS did not change on the group PE at different temperatures of water; TBARS were higher for PS28 than PS35 and PS39; PT35 had higher values than PT28 and PT39. For GSH, PS39 was lower than PS35; PE28 was higher than PE35 and PE39 and PT35 were lower than PT28 and PT39. Plasma concentration of vitamin E did not present any difference for sedentary rats at different water temperatures, but for PE28, the values were lower than for PE35 and PE39, whereas PT39 was lower than PT35 and PT28. In relation to TBARS/GSH, it was verified an increase in oxidative stress for PS28 (in relation to PS35 and PS39), PE35, and PT35 (in relation to PE28 and PE39 or PT28 and PT39); regarding the ratio TBARS/vitamin E, the highest values were obtained at 35 degrees C for PS and PT groups and at 39 for PE group. These results have shown the great complexity of the interaction between physical training, thermal stress and pregnancy. Apparently, hypothermia produces large index of oxidative stress only in sedentary rats, but this index was greater at 35 degrees C in relation to extreme temperatures for trained rats. These results have suggested that physical training allows a more efficient activation of antioxidant mechanisms under thermal stress.  相似文献   

13.
The objective was to determine the effect of moderate changes in ambient temperature (TA) on breathing and body temperature in ponies chronically exposed to a TA of 21 degrees C in the summer and 5 degrees C in the winter. Normal (n = 6) and chronic carotid body-denervated (n = 6, 1-2 yr) ponies were studied during 1) winter months over 3-4 days at 5 (control TA) and 23 degrees C and 2) summer months over 2-4 days at 21 (control TA), 30, and 12 degrees C. Neither rectal nor arterial temperature changed with any alteration of TA (P greater than 0.10). Skin temperature (Tsk) always changed by 2-4 degrees C in the same direction as changes in TA (P less than 0.01), and Tsk was the only variable that differed between summer and winter control TA. While breathing room air 24-48 h after TA was altered, pulmonary ventilation (VE) and breathing frequency (f) were approximately 100 and 300%, respectively, above control with elevated TA and approximately 25-50% below control with reduced TA (P less than 0.01). Changes in f were closely related to changes in Tsk. Tidal volume (VT) changed inversely with changes in TA. Generally, while breathing room air, arterial PCO2 (Paco2) did not change from control during the first 48 h of altered TA. In studies when inspired CO2 was elevated VT increased by the same amount at all TA; f increased at low and control TA but decreased at elevated TA; and VE and Paco2 both increased relatively less at elevated TA, but the VE-Paco2 slope was independent of TA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
1. In non-fermentable substrates growth of mutant tsm-8 cells of Saccharomyces cerevisiae is restricted to about one generation after shift from 23 to 35 degrees C. Non-permissive conditions (35 degrees C, glycerol) cause a gradual decrease in respiration to about 20% of the activity at permissive temperature 23 degrees C). 2. Anaerobically grown and glucose-repressed mutant cells exhibit a decreased adaptation rate of mitochondrial functions to aerobic growth and non-fermentative growth, even at 23 degrees C, as revealed by determination of respiratory rates and mitochondrial protein synthesis. 3. At 35 degrees C, rho+ cells of mutant tsm-8 are converted to p- cells within 6-8 generations of growth, in all fermentable substrates tested. Drugs or antibiotics as nalidixic acid, acriflavin, chloramphenicol and erythromycin, bongkrecic acid, antimycin and FCCP, as well as anaerobiosis, have little or no influence on this kinetics. A heat shock does not yield rho- petites to a significant extent. 4. Reversion of tsm-8 cells to wild type function, which occurs spontaneously with a frequency of 10(-8), is found to be due to a mitochondrial mutational event.  相似文献   

16.
Blood flow of the finger and the forearm were measured in five male subjects by venous occlusion plethysmography using mercury-in-Silastic strain gauges in either a cool-dry (COOL: 25 degrees C, 40% relative humidity), a hot-dry (WARM: 35 degrees C, 40% relative humidity), or a hot-wet (HOT: 35 degrees C, 80% relative humidity) environment. One hand or forearm was immersed in a water bath, the temperature (Tw) of which was raised every 10 min by steps of 2 degrees C until it reached 41 degrees or 43 degrees C. While the other hand or forearm was kept immersed in a water bath (Tw, 35 degrees C), blood flow in the heated side (BFw) was compared with the corresponding blood flow in the control side (BFc). Under WARM or HOT conditions, finger BFw was significantly lower than finger BFc at a Tw of 39-41 degrees C in the majority of subjects. When Tw was raised to 43 degrees C, however, finger BFw became higher than BFc in nearly half of the subjects. In the COOL state, finger BFw did not decrease but increased steadily when Tw increased from 37 degrees to 43 degrees C. In the forearm, BFw increased steadily with increasing Tw even in WARM-HOT environments. No such heat-induced vasoconstriction was observed in the forearm. From these results we conclude that in hyperthermic subjects, the rise in local temperature to above core temperature produces vasoconstriction in the fingers, an area where no thermal sweating takes place.  相似文献   

17.
Winter wheat (Triticum aestivum L. cv Norin No. 61) was grown at 25 degrees C until the third leaves reached about 10 cm in length and then at 15 degrees C, 25 degrees C, or 35 degrees C until full development of the third leaves (about 1 week at 25 degrees C, but 2-3 weeks at 15 degrees C or 35 degrees C). In the leaves developed at 15 degrees C, 25 degrees C, and 35 degrees C, the optimum temperature for CO(2)-saturated photosynthesis was 15 degrees C to 20 degrees C, 25 degrees C to 30 degrees C, and 35 degrees C, respectively. The photosystem II (PS II) electron transport, determined either polarographically with isolated thylakoids or by measuring the modulated chlorophyll a fluorescence in leaves, also showed the maximum rate near the temperature at which the leaves had developed. Maximum rates of CO(2)-saturated photosynthesis and PS II electron transport determined at respective optimum temperatures were the highest in the leaves developed at 25 degrees C and lowest in the leaves developed at 35 degrees C. So were the levels of chlorophyll, photosystem I and PS II, whereas the level of Rubisco decreased with increasing temperature at which the leaves had developed. Kinetic analyses of chlorophyll a fluorescence changes and P700 reduction showed that the temperature dependence of electron transport at the plastoquinone and water-oxidation sites was modulated by the temperature at which the leaves had developed. These results indicate that the major factor that contributes to thermal acclimation of photosynthesis in winter wheat is the plastic response of PS II electron transport to environmental temperature.  相似文献   

18.
The effects of the potassium (K(+)) channel opener pinacidil (Pin) on the coronary smooth muscle Ca(2+)-myosin light chain (MLC) phosphorylation pathway under hypothermic K(+) cardioplegia were determined by use of an in vitro microvessel model. Rat coronary arterioles (100-260 microm in diameter) were subjected to 60 min of simulated hypothermic (20 degrees C) K(+) cardioplegic solutions (K(+) = 25 mM). We first characterized the time course of changes in intracellular Ca(2+) concentration, MLC phosphorylation, and diameter and observed that the K(+) cardioplegia-related vasoconstriction was associated with an activation of the Ca(2+)-MLC phosphorylation pathway. Supplementation with Pin effectively suppressed the Ca(2+) accumulation and MLC phosphorylation in a dose-dependent manner and subsequently maintained a small decrease in vasomotor tone. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide, but not the nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester, significantly inhibited the effect of Pin. K(+) cardioplegia augments the coronary Ca(2+)-MLC pathway and results in vasoconstriction. Pin effectively prevents the activation of this pathway and maintains adequate vasorelaxation during K(+) cardioplegia through a K(ATP)-channel mechanism not coupled with the endothelium-derived NO signaling cascade.  相似文献   

19.
Three white-rot fungi, Phanerochaete chrysosporium, Polyporus tulipiferae, and Polyporus sp. A336 were grown on 100-g amounts of chopped oat straw in gassed 4.5 L (diameter 16 cm, height 23 cm) solid-state reactors for two weeks. The different gas atmospheres were regulated by (1) air diffusion through foam plugs, (2) intermittent or continuous air flow, (3) intermittent oxygen, 50 or 100% continuous oxygen flow, and (4) continuous 10% carbon dioxide in oxygen flow. The fermented straw was analyzed for total weight loss, Klason lignin loss, and enzymatic (cellulase) hydrolysis. P. chrysosporium grown on straw in continuous oxygen at 35 degrees C caused a 41% weight loss and 33.5% hydrolysis was obtained when the pretreated straw was hydrolyzed with cellulase enzyme. P. tulipiferae caused a 27% weight loss and 34.3% cellulase hydrolysis in the straw at 30 degrees C. Polyporus sp. A336 selectively degraded lignin of the straw and under intermittent oxygen resulted in an 18% weight loss and 33.6% cellulase hydrolysis at 35 degrees C. When the straw was supplemented with 10% xylose (straw basis) and was continuously gassed with 50% oxygen, Polyporus sp. A336 produced a 14.5% weight loss and 38.7% cellulase hydrolysis. Oxygen and carbon dioxide exchange rates were measured for some of these bench-scale fermentations.  相似文献   

20.
Alternating (C-T)n sequences are involved in the H-DNA structure associated with (GA)n.(CT)n sequences. Low pH values facilitate H-DNA formation. We have undertaken a detailed analysis of the structural consequences of the (C-T)n sequence as a function of pH. The structures of three DNA oligonucleotides, d(CT)4, d(TC)4 and d(TC)15, have been studied by NMR. We found that their conformations are polymorphic and pH dependent. There are at least three major conformational species: an antiparallel-stranded (APS) duplex with entirely C:T base pairs at pH 7, an antiparallel-stranded (APS) duplex with entirely C+:T base pairs at pH 3, and a possible parallel-stranded (PS) duplex with C+:C and T:T base pairs near pH 5. In the intermediate pH range, the APS duplex may have varying numbers of C+:T and C:T base pairs, and there may be a fast exchange going on between APS duplex species involving these two kinds of base pairs. However, the transition between the APS and PS duplexes is slow. Structural refinement of the two octamers, d(TC)4 and d(CT)4, at pH = 6.9 and pH = 3 using 2D-NOE data suggests that the molecules are likely in the duplex form at 5 degrees C. We lack evidence that the structure at pH 3 is a PS structure with T nucleotides residing in the exterior of the helix. Titration of the longer oligonucleotide, d(TC)15, showed a prominent pKa of approximately 6, approaching the value of 7.0 obtained from the titration of poly-(dC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号