首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the isolation and characterization of a new Medicago truncatula hyper-nodulation mutant, designated sunn (super numeric nodules). Similar to the previously described ethylene-insensitive mutant sickle, sunn exhibits a 10-fold increase in the number of nodules within the primary nodulation zone. Despite this general similarity, these two mutants are readily distinguished based on anatomical, genetic, physiological, and molecular criteria. In contrast to sickle, where insensitivity to ethylene is thought to be causal to the hyper-nodulation phenotype (R.V. Penmetsa, D.R. Cook [1997] Science 275: 527-530), nodulation in sunn is normally sensitive to ethylene. Nevertheless, sunn exhibits seedling root growth that is insensitive to ethylene, although other aspects of the ethylene triple response are normal; these observations suggest that hormonal responses might condition the sunn phenotype in a manner distinct from sickle. The two mutants also differ in the anatomy of the nodulation zone: Successful infection and nodule development in sunn occur predominantly opposite xylem poles, similar to wild type. In sickle, however, both infection and nodulation occur randomly throughout the circumference of the developing root. Genetic analysis indicates that sunn and sickle correspond to separate and unlinked loci, whereas the sunn/skl double mutant exhibits a novel and additive super-nodulation phenotype. Taken together, these results suggest a working hypothesis wherein sunn and sickle define distinct genetic pathways, with skl regulating the number and distribution of successful infection events, and sunn regulating nodule organogenesis.  相似文献   

3.
Medicago spp. are able to develop root nodules via symbiotic interaction with Sinorhizobium meliloti. Calcium-dependent protein kinases (CDPKs) are involved in various signalling pathways in plants, and we found that expression of MtCPK3, a CDPK isoform present in roots of the model legume Medicago truncatula, is regulated during the nodulation process. Early inductions were detected 15 min and 3-4 days post-inoculation (dpi). The very early induction of CPK3 messengers was also present in inoculated M. truncatula dmi mutants and in wild-type roots subjected to salt stress, indicating that this rapid response is probably stress-related. In contrast, the later response was concomitant with cortical cell division and the formation of nodule primordia, and was not observed in wild-type roots inoculated with nod (-) strains. This late induction correlated with a change in the subcellular distribution of CDPK activities. Accordingly, an anti-MtCPK3 antibody detected two bands in soluble root extracts and one in the particulate fraction. CPK3::GFP fusions are targeted to the plasma membrane in epidermal onion cells, a localization that depends on myristoylation and palmitoylation sites of the protein, suggesting a dual subcellular localization. MtCPK3 mRNA and protein were also up-regulated by cytokinin treatment, a hormone linked to the regulation of cortical cell division and other nodulation-related responses. An RNAi-CDPK construction was used to silence CPK3 in Agrobacterium rhizogenes-transformed roots. Although no major phenotype was detected in these roots, when infected with rhizobia, the total number of nodules was, on average, twofold higher than in controls. This correlates with the lack of MtCPK3 induction in the inoculated super-nodulator sunn mutant. Our results suggest that CPK3 participates in the regulation of the symbiotic interaction.  相似文献   

4.
Genetic approaches have proved to be extremely useful in dissecting the complex nitrogen-fixing Rhizobium-legume endosymbiotic association. Here we describe a novel Medicago truncatula mutant called api, whose primary phenotype is the blockage of rhizobial infection just prior to nodule primordium invasion, leading to the formation of large infection pockets within the cortex of noninvaded root outgrowths. The mutant api originally was identified as a double symbiotic mutant associated with a new allele (nip-3) of the NIP/LATD gene, following the screening of an ethylmethane sulphonate-mutagenized population. Detailed characterization of the segregating single api mutant showed that rhizobial infection is also defective at the earlier stage of infection thread (IT) initiation in root hairs, as well as later during IT growth in the small percentage of nodules which overcome the primordium invasion block. Neither modulating ethylene biosynthesis (with L-alpha-(2-aminoethoxyvinylglycine or 1-aminocyclopropane-1-carboxylic acid) nor reducing ethylene sensitivity in a skl genetic background alters the basic api phenotype, suggesting that API function is not closely linked to ethylene metabolism or signaling. Genetic mapping places the API gene on the upper arm of the M. truncatula linkage group 4, and epistasis analyses show that API functions downstream of BIT1/ERN1 and LIN and upstream of NIP/LATD and the DNF genes.  相似文献   

5.
6.
7.
Legume rhizobia symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture and in the Earth's nitrogen cycle. Signaling between rhizobia and legumes initiates development of a unique plant organ, the root nodule, where bacteria undergo endocytosis and become surrounded by a plant membrane to form a symbiosome. Between this membrane and the encased bacteria exists a matrix-filled space (the symbiosome space) that is thought to contain a mixture of plant- and bacteria-derived proteins. Maintenance of the symbiosis state requires continuous communication between the plant and bacterial partners. Here, we show in the model legume Medicago truncatula that a novel family of six calmodulin-like proteins (CaMLs), expressed specifically in root nodules, are localized within the symbiosome space. All six nodule-specific CaML genes are clustered in the M. truncatula genome, along with two other nodule-specific genes, nodulin-22 and nodulin-25. Sequence comparisons and phylogenetic analysis suggest that an unequal recombination event occurred between nodulin-25 and a nearby calmodulin, which gave rise to the first CaML, and the gene family evolved by tandem duplication and divergence. The data provide striking evidence for the recruitment of a ubiquitous Ca(2+)-binding gene for symbiotic purposes.  相似文献   

8.
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.  相似文献   

9.
10.
11.
Autoregulation of nodulation (AON), a systemic signaling pathway in legumes, limits the number of nodules formed by the legume in its symbiosis with rhizobia. Recent research suggests a model for the systemic regulation in Medicago truncatula in which root signaling peptides are translocated to the shoot where they bind to a shoot receptor complex containing the leucine‐rich repeat receptor‐like kinase SUNN, triggering signal transduction which terminates nodule formation in roots. Here we show that a tagged SUNN protein capable of rescuing the sunn‐4 phenotype is localized to the plasma membrane and is associated with the plasmodesmata. Using bimolecular fluorescence complementation analysis we show that, like its sequence ortholog Arabidopsis CLV1, SUNN interacts with homologous CLV1‐interacting proteins MtCLAVATA2 and MtCORYNE. All three proteins were also able to form homomers and MtCRN and MtCLV2 also interact with each other. A crn Tnt1 insertion mutant of M. truncatula displayed a shoot controlled increased nodulation phenotype, similar to the clv2 mutants of pea and Lotus japonicus. Together these data suggest that legume AON signaling could occur through a multi‐protein complex and that both MtCRN and MtCLV2 may play roles in AON together with SUNN.  相似文献   

12.
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein–protein interactions: an N‐terminal VAMP‐associated protein (VAP)/major sperm protein (MSP) domain and a C‐terminal ankyrin‐repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non‐plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.  相似文献   

13.
14.
15.
The evolutionary origins of legume root nodules are largely unknown. We have identified a gene, LATD, of the model legume Medicago truncatula, that is required for both nodule and root development, suggesting that these two developmental processes may share a common evolutionary origin. The latd mutant plants initiate nodule formation but do not complete it, resulting in immature, non-nitrogen-fixing nodules. Similarly, lateral roots initiate, but remain short stumps. The primary root, which initially appears to be wild type, gradually ceases growth and forms an abnormal tip that resembles that of the mutant lateral roots. Infection by the rhizobial partner, Sinorhizobium meliloti, can occur, although infection is rarely completed. Once inside latd mutant nodules, S. meliloti fails to express rhizobial genes associated with the developmental transition from free-living bacterium to endosymbiont, such as bacA and nex38. The infecting rhizobia also fail to express nifH and fix nitrogen. Thus, both plant and bacterial development are blocked in latd mutant roots. Based on the latd mutant phenotype, we propose that the wild-type function of the LATD gene is to maintain root meristems. The strong requirement of both nodules and lateral roots for wild-type LATD gene function supports lateral roots as a possible evolutionary origin for legume nodules.  相似文献   

16.
17.
18.
19.
20.
Full-grown Xenopus oocytes undergo meiotic maturation in response to progesterone stimulation. Using [14C]dimethyloxazolidine dione (DMO), we have measured a cytoplasmic alkalization in these oocytes starting at pH 7.14 ± 0.17 during the germinal vesicle (GV) stage, and increasing to 7.56 ± 0.14 at the time of germinal vesicle breakdown (GVBD). During this period, the rate of protein synthesis increases 2-fold from 18.9 ± 3.1 to 37.7 ± 8.8 ng/hr/oocyte. Artificial alkalization of GV stage oocytes to pHi 7.68 ± 0.16, by exposure to the weak bases trimethylamine, methylamine, procaine, or imidazole, led to a 1.8-fold increase in the synthetic rate. Intracellular acidification from 7.5 back to 7.0 had no apparent effect on the elevated rate of protein synthesis following GVBD. Therefore, a cytoplasmic alkalization in the range of 7.5 to 7.6 seems to be one of the events that is necessary for initiating the increase in protein synthesis in maturing Xenopus oocytes; however, it does not appear that an elevated pHi is necessary to maintain the increased synthetic rate following GVBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号