首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We are grateful to the commentators for taking the time to respond to our article. Too many interesting and important points have been raised for us to tackle them all in this response, and so in the below we have sought to draw out the major themes. These include problems with both the term ‘ultimate causation’ and the proximate-ultimate causation dichotomy more generally, clarification of the meaning of reciprocal causation, discussion of issues related to the nature of development and phenotypic plasticity and their roles in evolution, and consideration of the need for an extended evolutionary synthesis.  相似文献   

2.
In recent years, a number of studies have been performed to evaluate the possible health benefits of an increased intake of folic acid (FA) on human health. However, the only well-documented benefit emerging from randomized controlled trials, nonrandomized interventions trials, and observational studies is the risk reduction of neural tube defects (NTDs). NTDs are congenital malformations that include anencephaly, encephalocele, and spina bifida caused by the failure of fusion of the neural tube that normally closes between 22nd and 28th day since conception (on an average 40-42th day after the first day of last menstrual period). The occurrence of NTDs varies among population between 0.8 and 3 per 1,000, and it is estimated that 324,000 pregnancies are affected every year worldwide. More FA can decrease the NTDs risk up to 0.6 per 1,000 births. Other malformations as congenital heart defects, cleft lip, and limb deficiencies can be most probably also reduced. To decrease the NTDs risk, it is recommended that all women capable of becoming pregnant should have more FA. The goal is that every woman could start her pregnancy with an optimal folate status, estimated today to be as more than 906 nmol/L of red blood cell folate concentration. More FA can be obtained through a strict Mediterranean pattern of nutrition and healthy life style, fortified food, supplements. Women and health authorities can choose the most appropriate strategy. Monitoring folate status of women during the periconceptional period is an essential way to evaluate the success of the preferred strategy.  相似文献   

3.
A large fraction of cellular proteins are oligomeric. Protein oligomerization may often be an advantageous feature from the perspective of protein evolution and has probably evolved by a variety of mechanisms. The study of protein oligomerization may provide insights into the early protein environment and the evolution of modern proteins. Oligomeric mini-proteins, short peptides with discrete protein-like structures, may serve as valuable models for understanding features of protein oligomerization.  相似文献   

4.
5.
Neisseria gonorrhoeae exhibits striking variability in several of its surface components (pili, Opa proteins and lipooligosaccharide) in vivo and in vitro. Such flagrant variation of this mucosal pathogen's surface components contrasts sharply with changes in single surface components of blood-borne trypanosomes and borreliae. Despite these differences, similar molecular events are sometimes involved.  相似文献   

6.
Minor DL 《Neuron》2007,54(4):511-533
Structural biology now plays a prominent role in addressing questions central to understanding how excitable cells function. Although interest in the insights gained from the definition and dissection of macromolecular anatomy is high, many neurobiologists remain unfamiliar with the methods employed. This primer aims to help neurobiologists understand approaches for probing macromolecular structure and where the limits and challenges remain. Using examples of macromolecules with neurobiological importance, the review covers X-ray crystallography, electron microscopy (EM), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance (NMR) and biophysical methods with which these approaches are often paired: isothermal titration calorimetry (ITC), equilibrium analytical ultracentifugation, and molecular dynamics (MD).  相似文献   

7.
Isoprene emission from plants: why and how   总被引:4,自引:0,他引:4  
BACKGROUND: Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere-atmosphere hydrocarbon exchange. SCOPE: The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. CONCLUSIONS: The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known.  相似文献   

8.
Action understanding: how, what and why   总被引:2,自引:0,他引:2  
The mirror neuron system may help us understand how others act and what they do. A recent study has shown that consciously reflecting on their intentions additionally recruits mentalizing areas.  相似文献   

9.
10.
<正>B and T lymphocytes are responsible for the acquisition of adaptive immune response, among which, B cells dominate humoral immunity. In vivo, B cells utilize surface expressed B cell receptors (BCRs) to sense antigens presented by antigen-presenting cells (APCs), and eventually mediate antibody response and immune memory. It is well recognized  相似文献   

11.
It is argued, with selected examples from freshwaterfish systematics, that species should be viewed as anexpression of self-perpetuated clustered variation innature, conforming to the phylogenetic speciesconcept. The importance of species lies in thefunctional and structural significance of theirdiagnostic characters. Species can be nested by theircharacters into a tree diagram (phylogeny) orhierarchical alignment structure (classification) ofcharacter distribution, which may be taken to reflectevolution, the unifying theory of organismaldiversification. The phylogenetic species concept,which emphasizes recognition of a pattern ofvariation, describes better than any other proposedconcept the units called species by systematists.Other concepts are based on processes and normally donot permit recognition of particular taxa. Specieshave unique histories, and speciation may proceed bydifferent mechanisms. Whereas it may be postulatedthat speciation entails an irreversible change in thegenetic structure of taxa, recognized by phenotypicexpression and apparently also maintained to a largeextent by selection for a particular phenotype,species recognition must remain independent ofassumptions about species history and spatialdistribution. Species are monophyletic taxa and thespecies category does not differ significantly inphylogenetic regard from other systematic categories.Species as such are not necessarily evolutionaryunits. It is recommended to apply species names withreference to the diagnostic characters of the speciesand to abandon the type specimen described by theInternational Code of Zoological Nomenclature as anomenclatural reference unit.  相似文献   

12.
Geographic patterns: how to identify them and why   总被引:11,自引:0,他引:11  
Geographic patterns of genetic diversity allow us to make inferences about population histories and the evolution of inherited disease. The statistical methods describing genetic variation in space, such as estimation of genetic variances, mapping of allele frequencies, and principal components analysis, have opened up the possibility to reconstruct demographic processes whose effects have been tested by a variety of approaches, including spatial autocorrelation, cladistic analyses, and simulations. These studies have significantly contributed to our understanding of human genetic variation; however, the molecular data that have accumulated since the mid-1980s have also created new complications. Reasons include the generally limited sample sizes, but, more generally, it is the nature of molecular variation itself that makes it necessary to develop and apply specific models and methods for the treatment of DNA data. The foreseeable diffusion of laboratory techniques for the rapid typing of many DNA markers will force us to change our approach to the study of human variation anyway, moving from the gene level toward the genome level. Because extensive variation among loci is the rule rather than the exception, an important practical tip is to be skeptical of inferences based on single-locus diversity.  相似文献   

13.
14.
Hanna Kokko 《Oikos》2011,120(12):1826-1837
Modelling of partial migration in birds has progressed from simple graphical representations to sophisticated analyses that use evolutionary invasion analysis to determine how the success of the two strategies (stay year round on the breeding grounds, or migrate) can become frequency dependent. Here I build two models to relax two assumptions commonly made in models and often violated in nature: that individuals do not vary in any trait other than their migratory propensity, and that the prior residence effect (which grants priority access of good habitats to non‐migrants) operates at maximum strength. The same framework can incorporate and merge aspects of various hypotheses proposed to explain partial migration (dominance, body size, arrival timing, and limited foraging opportunities), and shows that either small (subdominant) or large (dominant) individuals may emerge as the more likely migrants; the latter case occurs when it is easy for socially dominant migrants to win back prime breeding locations upon their arrival. The dynamics of territory acquisition is shown to be an important and understudied topic, as variations in the relative importance of prior residency versus resource holding power can shift a population from complete migration to complete year‐round residency. These models also highlight exceptions to a tacit assumption in discussions of evolution of migration under climate change, which is that populations can decline if genetic adaptation or phenotypic plasticity do not occur fast enough. Competition can also yield the opposite pattern where adaptation itself leads to a population decline.  相似文献   

15.
16.
Finding fundamental organizing principles is the current intellectual front end of systems biology. From a hydrogen atom to the whole cell level, organisms manage massively parallel and massively interactive processes over several orders of magnitude of size. To manage this scale of informational complexity it is natural to expect organizing principles that determine higher order behavior. Currently, there are only hints of such organizing principles but no absolute evidences. Here, we present an approach as old as Mendel that could help uncover fundamental organizing principles in biology. Our approach essentially consists of identifying constants at various levels and weaving them into a hierarchical chassis. As we identify and organize constants, from pair-wise interactions to networks, our understanding of the fundamental principles in biology will improve, leading to a theory in biology.  相似文献   

17.
When biological material is transferred from one individual’s body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.  相似文献   

18.
19.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号