首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang J  Zhang J  Wang Z  Xu G  Zhu Q 《Plant physiology》2004,135(3):1621-1629
This study tested the hypothesis that a controlled water deficit during grain filling of wheat (Triticum aestivum) could accelerate grain-filling rate through regulating the key enzymes involved in Suc-to-starch pathway in the grains. Two high lodging-resistant wheat cultivars were field grown. Well-watered and water-deficit (WD) treatments were imposed from 9 DPA until maturity. The WD promoted the reallocation of prefixed 14C from the stems to grains, shortened the grain-filling period, and increased grain-filling rate or starch accumulation rate (SAR) in the grains. Activities of Suc synthase (SuSase), soluble starch synthase (SSS), and starch branching enzyme (SBE) in the grains were substantially enhanced by WD and positively correlated with the SAR. ADP Glc pyrophosphorylase activity was also enhanced in WD grains initially and correlated with SAR with a smaller coefficient. Activities of granule-bound starch synthase and soluble and insoluble acid invertase in the grains were less affected by WD. Abscisic acid (ABA) content in the grains was remarkably enhanced by WD and very significantly correlated with activities of SuSase, SSS, and SBE. Application of ABA on well-watered plants showed similar results as those by WD. Spraying with fluridone, an ABA synthesis inhibitor, had the opposite effect. The results suggest that increased grain-filling rate is mainly attributed to the enhanced sink activity by regulating key enzymes involved in Suc-to-starch conversion, especially SuSase, SSS, and SBE, in wheat grains when subjected to a mild water deficit during grain filling, and ABA plays a vital role in the regulation of this process.  相似文献   

2.
《Plant science》1987,53(2):131-138
During grain filling in wheat (Triticum aestivum L.) there is a progressive increase in the number of amyloplasts in the endosperm, as well as in cell number, DNA content and nuclear ploidy as the grain increases in size. The plastid DNA content also rises initially, and then there is a levelling off in the amount, with the percentage plastid DNA finally making up approximately 0.9% of the total endosperm DNA.  相似文献   

3.
研究品种之间群体耗水特性的差异及其关键影响因素,为品种耗水特性评价与低耗水品种鉴选方法提供依据。选用水分亏缺条件下产量差异不显著,但耗水量差异极显著的冬小麦品种晋麦47和京411及其15个近等基因系为实验材料。利用防雨池和防雨棚开展实验,模拟水分亏缺条件。监测全生育期土壤水分含量,计算总耗水量,收获后测定籽粒产量,计算水分利用效率(WUE)。同时,分别在拔节-孕穗期、抽穗-开花期和灌浆期3个不同生育期监测冠层-大气温度差值(CTD)、叶片蒸腾速率和气孔导度。结果表明,3个不同生育期,15个近等基因系及其亲本之间,CTD均达到显著差异。CTD的方差分析表明,基因型和年份均对不同生育期的CTD有显著影响,但是二者之间仅在抽穗-开花期存在互作(P=0.0002)。15个近等基因系及其亲本之间耗水量存在显著差异,产量没有显著差异。源于耗水量的差异,部分品种/系之间WUE达显著差异。3个不同生育期,15个近等基因系及其亲本之间,CTD与总耗水量均呈极显著负相关关系。抽穗-开花期最高,2012—2013年度和2016—2017年度分别达到0.7042和0.6095。叶片蒸腾速率和气孔导度与群体总耗水量之间相关性很弱,3个生育期均未达到显著水平。对该组近等基因系材料,影响群体总耗水量的关键因素不是叶片蒸腾生理特性,而是群体冠层生长特性。表明构建合理的群体冠层结构不仅是获得高产的途经,而且是调控群体总耗水量,提高品种水分利用效率的重要途径。  相似文献   

4.
Yang J  Zhang J  Liu K  Wang Z  Liu L 《The New phytologist》2006,171(2):293-303
Grain filling is an intensive transportation process regulated by soil drying and plant hormones. This study investigated how the interaction between abscisic acid (ABA) and ethylene is involved in mediating the effects of soil drying on grain filling in wheat (Triticum aestivum). Two wheat cultivars, cv. Yangmai 6 and cv. Yangmai 11, were field-grown, and three irrigation treatments, well-watered, moderately soil-dried (MD) and severely soil-dried (SD), were imposed from 9 d post anthesis until maturity. A higher ABA concentration and lower concentrations of ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) were found in superior grains (within a spike, those grains that were filled earlier and reached a greater size) than in inferior grains (within a spike, those grains that were filled later and were smaller), and were associated with a higher filling rate in the superior grains. An increase in ABA concentration and reductions in ethylene and ACC concentrations in grains under MD conditions increased the grain-filling rate, whereas much higher ethylene, ACC and ABA concentrations under SD conditions reduced the grain-filling rate. Application of chemical regulators gave similar results. The results did not differ between the two cultivars. The grain-filling rate in wheat is mediated by the balance between ABA and ethylene in the grains, and an increase in the ratio of ABA to ethylene increases the grain-filling rate.  相似文献   

5.
旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系   总被引:6,自引:0,他引:6  
樊廷录  宋尚有  徐银萍  李兴茂 《生态学报》2007,27(11):4491-4497
利用红外测温仪,于2005~2006年在甘肃陇东旱原研究了我国北方冬麦区域的23个小麦品种(系)灌浆不同时期冠层温度的差异及其与产量和水分利用效率的关系。结果表明,不同基因型小麦在籽粒灌浆结实期存在着冠层温度高度分异的现象,其分异程度随灌浆过程的进行明显加大,到灌浆中后期达到最大。无论灌浆初期还是中期或中后期,旱地冬小麦产量、水分利用效率与冠层温度均呈极显著的负相关(R2=0.445-0.812),并且随着灌浆期推移,相关性增大,灌浆中后期冠层温度每升高1℃,旱地冬小麦产量减少近280 kg hm-2,水分利用效率下降约0.6 kg hm-2mm-1。灌浆中期以后不同基因型小麦冠层温度保持较高的一致性,冠层温度偏低的品种具有较高的产量和水分利用效率。灌浆中后期的冠层温度在评价小麦产量和水分利用效率上具有较高的可靠性,可作为一个田间选择指标应用。  相似文献   

6.
Rye (Secale cereale L.) chromosome arm 1RS could delay leaf senescence, and change in H2O2 content is a useful index for weighing the ability to delay the senescence. Two wheat cultivars, Chuannong12 (CN12) and Chuannong 18 (CN18), harboring the wheat–rye 1BL/1RS translocated chromosome were investigated for H2O2 change and physiological index after flowering under field conditions, and MY11, the agronomical parent of both CN12 and CN18, was used as the control. A combined change in the peak value of CdSe/ZnS quantum dot (QD) fluorescence and morphological observation indicated that the H2O2 contents in CN12 and CN18 were generally lower than that in MY11. They both had higher values for net photosynthetic rate (P n), stomatal conductance (G s), F\textv /F\textm F_{\text{v}} /F_{\text{m}}^{\prime } F\textv /F\textm F_{\text{v}}^{\prime } /F_{\text{m}}^{\prime } , and photochemical quenching of PSII (qP) than MY11 only in the late measurement stage. Some small differences were also observed, such as CN12 and CN18 wheat cultivars having higher and longer photosynthetic competence than MY11 during the grain filling stage, which perhaps resulted from a mechanism for removing oxidative species, especially H2O2.  相似文献   

7.
戴廷波  赵辉  荆奇  姜东  曹卫星 《生态学报》2006,26(11):3670-3676
灌浆期高温和水分逆境是影响小麦籽粒产量和品质的关键气候因子。以扬麦9号、徐州26和豫麦34三个小麦品种为材料,利用人工气候室模拟灌浆期高温和水分胁迫环境,研究了花后高温及温度和水分互作对小麦籽粒蛋白质和淀粉形成的影响。结果表明,高温显著提高了小麦籽粒蛋白质含量及清蛋白、球蛋白和醇溶蛋白含量,但降低了谷蛋白含量,导致麦谷蛋白/醇溶蛋白比值降低。高温显著降低了籽粒总淀粉和支链淀粉含量及支/直比。籽粒蛋白质和淀粉及其组分形成所需的适宜昼夜温差随小麦品质类型而异,但温度水平对籽粒蛋白质和淀粉的影响较温差大。在高温和水分逆境下,温度对籽粒蛋白质和淀粉含量的影响较水分逆境大,且存在显著的互作效应。小麦籽粒蛋白质含量均表现为干旱〉对照〉渍水,以高温干旱最高,适温渍水最低;淀粉含量为对照〉干旱〉渍水,以适温对照最高,而高温渍水最低。高温和水分逆境显著提高了籽粒醇溶蛋白含量而降低了谷蛋白含量及支链淀粉含量,使蛋白质谷/醇比和淀粉支/直比降低,以高温渍水对籽粒蛋白质和淀粉组分的影响最为显著。不同品种之间,高蛋白小麦籽粒蛋白质和组分的形成受高温和水分逆境的影响更大,而低蛋白品种籽粒淀粉形成显著受温度和水分逆境的调节。分析表明,在高温和水分逆境下籽粒蛋白质含量与清蛋白和醇溶蛋白显著正相关,籽粒淀粉含量与谷蛋白、支链淀粉含量及支/直比显著正相关。  相似文献   

8.
9.
Lipoxygenase (LOG) in protein fractions isolated from the leaves of substituted wheat lines was investigated. Three molecular forms of the enzyme were detected. A water deficiency caused the induction of a membrane-bound form (mLOG) and resulted in a decrease in the activity of "soluble" enzymes (s1LOG) and (s2LOG) in most genotypes. A correlation analysis demonstrated the dependence between the level of enzymatic activity and indices of resistance to drought. A genetic control of the s 1 LOG and s2LOG activity at an optimal water supply level was associated with chromosomes 1A, 1D, 3A, 5A, 5B, and 5D, while under the conditions of the modeled soil drought, it was associated with chromosomes 1B and 1D.  相似文献   

10.
Lipoxygenase (LOG) in protein fractions isolated from the leaves of substituted wheat lines was investigated. Three molecular forms of the enzyme were detected. A water deficiency caused the induction of a membrane-bound form (mLOG) and resulted in a decrease in the activity of “soluble” enzymes (s1LOG) and (s2LOG) in most genotypes. A correlation analysis demonstrated the dependence between the level of enzymatic activity and indices of resistance to drought. A genetic control of the s1LOG and s2LOG activity at an optimal water supply level was associated with chromosomes 1A, 1D, 3A, 5A, 5B, and 5D, while under the conditions of the modeled soil drought, it was associated with chromosomes 1B and 1D.  相似文献   

11.
Yang J  Zhang J  Wang Z  Zhu Q  Liu L 《Planta》2004,220(2):331-343
This study investigated if a controlled water deficit during grain filling of wheat (Triticum aestivum L.) could accelerate grain filling by facilitating the remobilization of carbon reserves in the stem through regulating the enzymes involved in fructan and sucrose metabolism. Two high lodging-resistant wheat cultivars were grown in pots and treated with either a normal (NN) or high amount of nitrogen (HN) at heading time. Plants were either well-watered (WW) or water-stressed (WS) from 9 days post anthesis until maturity. Leaf water potentials markedly decreased at midday as a result of water stress but completely recovered by early morning. Photosynthetic rate and zeatin + zeatin riboside concentrations in the flag leaves declined faster in WS plants than in WW plants, and they decreased more slowly with HN than with NN when soil water potential was the same, indicating that the water deficit enhanced, whereas HN delayed, senescence. Water stress, both at NN and HN, facilitated the reduction in concentration of total nonstructural carbohydrates (NSC) and fructans in the stems but increased the sucrose level there, promoted the re-allocation of pre-fixed 14C from the stems to grains, shortened the grain-filling period, and accelerated the grain-filling rate. Grain weight and grain yield were increased under the controlled water deficit when HN was applied. Fructan exohydrolase (FEH; EC 3.2.1.80) and sucrose phosphate synthase (SPS; EC 2.4.1.14) activities were substantially enhanced by water stress and positively correlated with the total NSC and fructan remobilization from the stems. Acid invertase (EC 3.2.1.26) activity was also enhanced by the water stress and associated with the change in fructan concentration, but not correlated with the total NSC remobilization and 14C increase in the grains. Sucrose:sucrose fructosyltransferase (EC 2.4.1.99) activity was inhibited by the water stress and negatively correlated with the remobilization of carbon reserves. Sucrose synthase (EC 2.4.1.13) activity in the stems decreased sharply during grain filling and showed no significant difference between WW and WS treatments. Abscisic acid (ABA) concentration in the stem was remarkably enhanced by water stress and significantly correlated with SPS and FEH activities. Application of ABA to WW plants yielded similar results to those for WS plants. The results suggest that the increased remobilization of carbon reserves by water stress is attributable to the enhanced FEH and SPS activities in wheat stems, and that ABA plays a vital role in the regulation of the key enzymes involved in fructan and sucrose metabolism.Abbreviations ABA Abscisic acid - DAS Days after sowing - DPA Days post anthesis - ESC Ethanol-soluble carbohydrate - FEH Fructan exohydrolase - HN High amount of nitrogen - INV Invertase - NN Normal amount of nitrogen - NSC Nonstructural carbohydrate - leaf Leaf water potential - soil Soil water potential - Pr Photosynthetic rate - SPS Sucrose phosphate synthase - SS Sucrose synthase - SST Sucrose:sucrose fructosyltransferase - Vlimit Limiting substrate - Vmax Saturated substrate - WS Water stressed - WSC Water-soluble carbohydrate - WW Well watered - Z Zeatin - ZR Zeatin riboside  相似文献   

12.

Key message

Genetic analysis of the yield and physical quality of wheat revealed complex genetic control, including strong effects of photoperiod-sensitivity loci.

Abstract

Environmental conditions such as moisture deficit and high temperatures during the growing period affect the grain yield and grain characteristics of bread wheat (Triticum aestivum L.). The aim of this study was to map quantitative trait loci (QTL) for grain yield and grain quality traits using a Drysdale/Gladius bread wheat mapping population grown under a range of environmental conditions in Australia and Mexico. In general, yield and grain quality were reduced in environments exposed to drought and/or heat stress. Despite large effects of known photoperiod-sensitivity loci (Ppd-B1 and Ppd-D1) on crop development, grain yield and grain quality traits, it was possible to detect QTL elsewhere in the genome. Some of these QTL were detected consistently across environments. A locus on chromosome 6A (TaGW2) that is known to be associated with grain development was associated with grain width, thickness and roundness. The grain hardness (Ha) locus on chromosome 5D was associated with particle size index and flour extraction and a region on chromosome 3B was associated with grain width, thickness, thousand grain weight and yield. The genetic control of grain length appeared to be largely independent of the genetic control of the other grain dimensions. As expected, effects on grain yield were detected at loci that also affected yield components. Some QTL displayed QTL-by-environment interactions, with some having effects only in environments subject to water limitation and/or heat stress.  相似文献   

13.
We investigated various physiological characteristics of two wheat (Triticum aestivum L.) cultivars differing in drought tolerance, i.e., Shannong16 (a drought-tolerant cultivar) and Weimai8 (a high-yield wheat cultivar under well-watered conditions), under field drought conditions. The experiments were conducted over a two-year period. Drought stress (DS) was imposed by controlling irrigation and sheltering the plants from rain. Compared with Weimai8, Shannong16 exhibited the better water balance, the higher osmotic adjustment, the slower degradation of chlorophyll, and the higher net photosynthetic rate under drought-stress conditions. At the same time, we observed that Shannong16 maintained more integrated chloroplast and thylakoid ultrastructure in flag leaves than Weimai8 under field drought stress. The different levels of antioxidant competence, indicated by MDA content, antioxidant enzyme activities, and the level of superoxide radicals observed in the two wheat cultivars may be involved in the different levels of drought resistance of these cultivars.  相似文献   

14.
Root growth and water uptake during water deficit and recovering in wheat   总被引:31,自引:0,他引:31  
Asseng  S.  Ritchie  J.T.  Smucker  A.J.M.  Robertson  M.J. 《Plant and Soil》1998,201(2):265-273
Root growth and soil water content were measured in a field experiment with wheat subjected to two periods of water deficit. The first period was induced early in the season between the early vegetative stage (22 DAS) and late terminal spikelet (50 DAS), the second period at mid-season between terminal spikelet (42 DAS) and anthesis (74 DAS). Total root growth was reduced under water deficit by a reduction in the top 30 cm, while the root system continued to grow in the deeper soil profile between 30 and 60 cm. Shortly after rewatering, the growth pattern reverted to fastest root growth rates in the shallow soil layers. In relative terms, the total root system increased in relation to the above ground dry matter under water shortage. The early-, the mid-season water deficit treatments, and the control treatment had total root length of 27.4, 19.4 and 30.6 km m-2, respectively, about 2 wk before maturity. Evapotranspiration declined under water deficit, but water uptake in deeper layers increased. Water uptake per unit root length was reduced with water deficit and was still low shortly after rewatering. Remarkable was the increase in water uptake at 2–3 weeks after rewatering, both deficit treatments exceeded the control by almost 100%. This increase in water uptake followed the burst of new root growth in the upper regions of the soil. However, water uptake rates subsequently declined towards maturity, being between 0.15 L km-1 d-1 and 0.17 L km-1 d-1 for the early and mid-season water deficit treatments, slightly higher than the control, 0.12 L km-1 d-1. The results showed that the crop subjected to early water deficit could compensate for some of the reductions in root growth during subsequent rewatering, but the impact of the mid-season water deficit treatment was more severe and permanent.  相似文献   

15.
Total NAD kinase activity remained unaltered in the drought non-adapted wheat leaves under water deficit, but gradually decreased with water deficit in the adapted ones. The share of the calmodulin-dependent enzyme was significantly higher in the drought-hardened than in non-hardened plants; however, under severe water deficit the activity of the enzyme dropped by half. It seems, therefore, that NAD kinase activity does not limit phosphorylation of NAD in dehydrated plant tissues.  相似文献   

16.
The interactions between reactive oxygen species (ROS), ethylene (ETH) and polyamines (PAs) in leaves of Glycyrrhiza inflata seedlings under root osmotic stress are reported. The results showed that the interactions between ROS, ETH and PAs were quite diverse at different degrees of damage. In slightly damaged leaves, the inhibition of ETH synthesis had no significant influence on ROS production and the content of putrescine (Put), spermidine (Spd) and spermine (Spm); the inhibition of Put synthesis had no significant influence on the production of ROS and ETH. However, in seriously damaged leaves, the inhibition of ETH production alleviated the increase in ROS production and the decrease in the content of Put, Spd and Spm; the reduction in polyamine content promoted the increase in the production of ROS and ETH; furthermore, exogenous H2O2 accelerated the increase in ETH production and the decrease in the content of these amines. Thus, it can be concluded that there is a close relationship between ROS content and the levels of ETH and PAs in the seriously damaged leaves. ROS production was modulated by the inhibition in ETH production and the reduction in polyamine content. Conversely, ROS promoted ETH production and reduced the polyamine content.  相似文献   

17.
The effects of treatment with 1-methylcyclopropene (1-MCP, the inhibitor of ethylene receptors) of 7-day-old wheat (Triticum durum Desf., cv. Bezenchukskaya 139) seedlings on growth characteristics, water relations, and the content of phytohormones during three days after watering cessation were studied. In treated seedlings, a decrease in the water content in the substrate resulted in a decrease in stomatal conductance in the leaves by one day earlier than in untreated seedlings. This could be related to the more rapid and substantial accumulation of ABA in treated plants. There was no clear relationship between changes in the content of cytokinins and water relations under the influence of 1-MCP under drought conditions. The role of ethylene and ABA in the regulation of growth and water relations in plants suffering from water deficit is discussed.  相似文献   

18.
The induction of two subtilisin-like proteases (P1 and P2) associated with stress-induced senescence in young plants was investigated in adult wheat plants during the grain-filling period. Western blot analysis of flag leaf extracts showed that P1 was induced very late in the life cycle of the plants (9 days post-anthesis) and that 7 days later it reached a 2.5-fold increase with respect to the initial value at anthesis. On the other hand, the P2 signal was already detected previous to anthesis and increased soon after anthesis, reaching a fourfold increase by the end of the grain-filling period. The induction of P1 and P2 temporally correlates with the degradation of the Rubisco small and large subunits in the flag leaf, as well as with nitrogen (N) accumulation in the ears. At the same time, a decrease in the endogenous concentration of the cytokinins isopentenyladenine and isopentenyladenosine (iP + iPA) in the leaves was observed. In detached leaves senescing in the dark, the levels of both proteases were affected by 6-benzylaminopurine application: the induction of P1 was completely prevented, whereas the induction of P2 was reduced. Our findings demonstrate that both P1 and P2 are expressed in leaves of adult plants and are induced during natural senescence. These results enable us to postulate their participation in N remobilization to developing grains during monocarpic senescence and their regulation by a cytokinin-mediated mechanism.  相似文献   

19.
Pierre Bancal 《Annals of botany》2009,103(8):1315-1324

Background and Aims

Nitrogen (N) remobilization is the major source of N for grain filling in wheat, the other being N uptake after anthesis (Nup); however, variations in remobilization efficiency are not fully understood. It is hard to tell whether the source or the sink effects predominate, because N in the culm at anthesis (Nant) correlates strongly with both N remobilization (Nrem) and grain number (Gn), respectively the main source and the main sink.

Methods

A pot experiment was thus designed to assess the relative contributions of the source and sink to Nrem regulation. Using two cultivars of winter wheat (Triticum aestivum, ‘Apache’ and ‘Autan’), three pre-anthesis and two post-anthesis N fertilization levels were applied in order to vary the N sources, while ear trimming at anthesis reduced sink size.

Key Results

Unlike results observed at a scale of m2, the equation binding Nant to Nrem exhibited a negative intercept, challenging the concept of nitrogen remobilization efficiency. Before ear trimming, Gn fitted well to Nant, with a slope dependent on genotype. To obtain a sink variable that was less correlated with Nant, the difference δGn was calculated between actual grain number and that which could be predicted from culm N before trimming. A multiple regression then predicted Nrem (r2 = 0·95) from Nant, Nup and δGn, with fitting unbiased by fertilization treatment, trimming or genotype.

Conclusions

In untrimmed culms, δGn had a negligible effect, so that Nrem could be fitted to Nant and Nup only: grain N filling appeared to be determined by sources only (Nant and Nup), not by sink, and the reduction of Nrem by Nup was quantified. In these ‘normal’ cases, the regulation of Nrem should thus be located within the N sources themselves. In contrast, ear-trimming needs to be considered with caution as it introduced a sink limitation on Nrem; moreover one with an important genotype effect.Key words: Triticum aestivum, winter wheat, source/sink, grain filling, nitrogen uptake, grain number, nitrogen harvest index, nitrogen remobilization efficiency, genotype × environment  相似文献   

20.
Root growth and water uptake in winter wheat under deficit irrigation   总被引:20,自引:0,他引:20  
Root growth is critical for crops to use soil water under water-limited conditions. A field study was conducted to investigate the effect of available soil water on root and shoot growth, and root water uptake in winter wheat (Triticum aestivum L.) under deficit irrigation in a semi-arid environment. Treatments consisted of rainfed, deficit irrigation at different developmental stages, and adequate irrigation. The rainfed plots had the lowest shoot dry weight because available soil water decreased rapidly from booting to late grain filling. For the deficit-irrigation treatments, crops that received irrigation at jointing and booting had higher shoot dry weight than those that received irrigation at anthesis and middle grain filling. Rapid root growth occurred in both rainfed and irrigated crops from floral initiation to anthesis, and maximum rooting depth occurred by booting. Root length density and dry weight decreased after anthesis. From floral initiation to booting, root length density and growth rate were higher in rainfed than in irrigated crops. However, root length density and growth rate were lower in rainfed than in irrigated crops from booting to anthesis. As a result, the difference in root length density between rainfed and irrigated treatments was small during grain filling. The root growth and water use below 1.4 m were limited by a caliche (45% CaCO3) layer at about 1.4 m profile. The mean water uptake rate decreased as available soil water decreased. During grain filling, root water uptake was higher from the irrigated crops than from the rainfed. Irrigation from jointing to anthesis increased seasonal evapotranspiration, grain yield, harvest index and water-use efficiency based on yield (WUE), but did not affect water-use efficiency based on aboveground biomass. There was no significant difference in WUE among irrigation treatments except one-irrigation at middle grain filling. Due to a relatively deep root system in rainfed crops, the higher grain yield and WUE in irrigated crops compared to rainfed crops was not a result of rooting depth or root length density, but increased harvest index, and higher water uptake rate during grain filling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号