首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are significant differences between mice and hamsters in polycyclic hydrocarbon and nitrosamine metabolism. Homogenates of liver, lung and intestinal mucosa from 6 strains of Syrian golden hamster were compared for their ability to metabolize benzo[alpha]pyrene (BP) and dimethylnitrosamine (DMN) to mutagens. Females of strains MHA/SSLak, LSH/SlLak, CB/SsLak, PD4/Lak LHC/Lak and Lak:LVG (SYR) were either untreated or received phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyls (AR) to induce drug-metabolizing enzymes. Salmonella typhimurium TA92 and TA98 were used as indicators of the formation of mutagans. Dimethylnitrosamine demethylase (DMND) was assayed using 1 mM DMN as substrate. Aryl hydrocarbon hydroxylase (AHH) was measured using benzo[alpha]pyrene as substrate. MC does not induced AHH activity in hamster liver, but is an excellent inducer of enzymes converting BP to mutagens. This lack of correlation between increased AHH activity and increased metabolism of BP to mutagen in liver is in marked contrast to correlations seen in mice. MC induces AHH in hamster lung and intestinal mucosa. AR induces AHH in liver, lung and intestinal mucosa. Activity of DMND in liver is not affected by treatment of hamsters with BP or AR, but is repressed approx. 30% by treatment with MC. Activity of DMND and conversion of DMN to mutagen are correlated (r = 0.59) in hamster liver. Microsomes of hamster liver are more effective than those from mouse in converting DMN to mutagen, despite similar DMND activities in livers from the two species.  相似文献   

2.
Selenium (Se) decreased the mutagenicity of benzo[a]pyrene (BP), 3-methylcholanthrene (3MC), and 3-methylcholanthrylene (3MCE) in Salmonella typhimurium strains TA98 and TA100. Metabolism of BP, 3MC and 3MCE to mutagens was accomplished with the liver S9 fraction from Aroclor 1254-treated male Sprague-Dawley rats. Exposure of the bacteria to 4 nmoles BP, 10 nmoles 3MC, or 10 nmoles 3MCE in the presence of S9, and up to 200 nmoles Se as Na2SeO3 resulted in decreased mutagenicities up to 39, 66 and 60% of their respective control activities without Se in TA98 and up to 46, 52 and 64% of their respective control activities without Se in TA100. Se (200 nmoles) alone was not mutagenic in strains TA98 or TA100 with or without S9. BP, 3MC and 3MCE were not mutagenic in either strain without S9. None of the tested concentrations of BP, 3MC, 3MCE and Se were cytotoxic. Assays of the aryl hydrocarbon hydroxylase (AHH) activity in the S9 preparation revealed decreased AHH activity with increase in Se concentration. The decreased mutagenicity and AHH activity were Se (as Na2SeO3) dependent and could not be duplicated by sulfur (S as Na2SO3). Inhibition of AHH activity by Se provides an explanation of the mechanism of Se inhibition of BP, 3MC and 3MCE mutagenicities in S. typhimurium TA98 and TA100.  相似文献   

3.
When mice from different inbred strains are injected intraperitoneally with 3-methylcholanthrene (MC), the activity of aryl hydrocarbon hydroxylase (AHH) rapidly increases in livers of some strains but not others. AHH plays a role in the metabolism of polycyclic hydrocarbons. Alleles at a small number of loci account for most of the variation in inducibility of hepatic AHH among mice, when MC is used as the inducing agent. Cigarette smoke is a common source of carcinogenic polycyclic hydrocarbons in the environment. Since some of the hydrocarbons in cigarette smoke are metabolized by AHH, the activity of AHH in tissues may affect the carcinogenicity of smoke in those tissues. The purpose of these experiments was to see whether induction of AHH in lung in response to cigarette smoke is regulated by the same genes that regulate induction of AHH in liver in response to MC. Mouse strains AKR/J and C57L/J and six recombinant inbred (RI) lines derived from them were tested for the response of AHH in lung and liver to parenteral MC or inhalation of cigarette smoke. Inducibility (the ratio of MC-induced AHH activities to basal AHH activities) in liver from MC-treated RI lines is bimodal and compatible with Mendelian segregation of genes at a small number of loci. Increased activities of AHH in MC-treated liver are associated with increased ability to metabolize BP and whole smoke condensates to mutagens detected by Salmonella typhimurium TA1538. Inducibility of AHH in lung in response to MC is not bimodal, and no definite conclusion about the number of loci can be made. When actual levels of AHH activity are considered, following the administration of MC as inducing agent, there is a correlation (r=0.89, p<0.01) between AHH levels in liver and lung, suggesting that some genes affecting liver also affect lung. Basal and MC-induced AHH levels in lung are also correlated (r=0.86, p<0.01). Mice with high basal activities have two to threefold higher levels of AHH after MC treatment than do mice with low basal activities. Induction of AHH in pulmonary tissues occurs in all mice after either parenteral MC or smoke inhalation. In contrast to MC treatment, AHH activities in lungs following smoke inhalation are not correlated with AHH levels in liver after MC (r=0.49) and are only weakly correlated with basal (r=0.66, 0.05相似文献   

4.
The mutagenic activities of trans-7,8-dihydro-7,8-dihydroxybenzo[a]-pyrene (BP 7,8-diol) and of trans-3,4-dihydroxy-7,12-dimethylbenz[a]-anthracene (DMBA 3,4-diol) towards S. typhimurium TA100 were measured in assays that were carried out on a micro-scale in liquid medium in the presence of microsomal fractions prepared from mouse skin or rat liver. In the presence of an NADPH-generating system, microsomal enzymes converted both diols into mutagens that were probably the respective 'bay-region' diol-epoxides. The rate of the enzyme-catalysed conversion of the BP 7,8-diol into mutagens by microsomal preparations from mouse epidermis was similar to that occurring with microsomes from rat liver. Pretreatment of mice by the topical application of benz[a]anthracene (BA) or 7,12-dimethylbenz[a]-anthracene (DMBA) increased the mutagenic activity of BP 7,8-diol mediated by mouse skin microsomal preparations by 2-fold and this was paralleled by a 4-fold increase in epidermal aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity. The results are discussed in relation to the high susceptibility of mouse skin to polycyclic aromatic hydrocarbon (PAH) carcinogenesis.  相似文献   

5.
The effect of various microsomal enzyme inducers such as DDT, benzpyrene, 3-MC, TCDD or phenobarbital on liver microsomal mixed-function oxidases and cytochrome P450 content in mice genetically responsive (C57B1/6J) and resistant (DBA/2J) to induction of aryl hydrocarbon hydroxylase (AHH) was studied. 3-MC and benzpyrene administration stimulated liver AHH activity 6–8 fold in C57B1/6J mice but had no effect in DBA/2J mice. However, intraperitoneal administration of TCDD increased AHH activity in both C57BL/6J and DBA/2J mice. This increase was accompanied by shift in the peak of cytochrome P450 difference spectrum from 450 to 448 nm. It is concluded that genetic resistance to AHH stimulation in DBA/2J mice is influenced by the type of inducer used.  相似文献   

6.
Comparison studies for detecting differences between liver microsome and S9 preparations from 4 strains (Donryu, Fischer, Sprague-Dawley, Wistar) of young male rats were carried out with pretreatment of the animals by inducers such as PCBs and PB plus 5,6-BF. Each microsome fraction was assayed for the enzymic activity of metabolism of model substrates such as aniline, benzophetamine, BP, DMN and 7-ethoxycoumarin. The hepatic S9 sample was also compared, as regards its metabolizing ability to activate 9 pre-mutagens (2AA, AAF, o-AAT, BP, DAB, DMBA, DMN, m-PDA, quinoline) to directly acting mutagens in the Salmonella/hepatic S9 activation test by using TA98, TA100 and TA1537 strains with or without cytochrome P450 inhibitors (SKF-525A, metyrapone, 7,8-benzoflavone).

In the enzymic assay with PCBs-induced microsomes, BP hydroxylation revealed a strain-specific difference: the microsomes from Fischer and Wistar rats were more effective for metabolizing BP than those from the other strains of rat. The effect of induction by PB plus 5,6-BF for Fischer rats showed relatively higher enzymic activity in the same induction group. Other microsomes prepared from rats with and without induction by PB plus 5,6-BF did not show a clear-cut strain dependency in the enzymic activities assayed.

In the mutation experiments with hepatic S9 samples, the examination of DAB and quinoline revealed a marked strain difference when S9 samples prepared from PCBs-pretreated and PB-plus-5,6-BF-induced rats were used: the S9 sample from Fischer rats was available for activating the two pre-mutagens to directly acting mutagens. No marked difference in the metabolic activation of the remaining 7-pre-mutagens was observed on other S9 preparations.

In examinations of mutagenicity activities with the use of three inhibitors, the two S9 preparations made with the two induction methods showed inhibition profiles closely similar to each other. However, there were minor differences in the profiles by these inhibitors.

From these findings it was concluded that Fischer rat-liver S9 is useful for detecting mutagens in the metabolic activation test, when induction by PB plus 5,6-BF was used in the Ames Salmonella test.  相似文献   


7.
Comparison studies for detecting differences between liver microsome and S9 preparations from 4 strains (Donryu, Fischer, Sprague-Dawley, Wistar) of young male rats were carried out with pretreatment of the animals by inducers such as PCBs and PB plus 5,6-BF. Each microsome fraction was assayed for the enzymic activity of metabolism of model substrates such as aniline, benzophetamine, BP, DMN and 7-ethoxycoumarin. The hepatic S9 sample was also compared, as regards its metabolizing ability to activate 9 pre-mutagens (2AA, AAF, o-AAT, BP, DAB, DMBA, DMN, m-PDA, quinoline) to directly acting mutagens in the Salmonella/hepatic S9 activation test by using TA98, TA100 and TA1537 strains with or without cytochrome P450 inhibitors (SKF-525A, metyrapone, 7,8-benzoflavone).In the enzymic assay with PCBs-induced microsomes, BP hydroxylation revealed a strain-specific difference: the microsomes from Fischer and Wistar rats were more effective for metabolizing BP than those from the other strains of rat. The effect of induction by PB plus 5,6-BF for Fischer rats showed relatively higher enzymic activity in the same induction group. Other microsomes prepared from rats with and without induction by PB plus 5,6-BF did not show a clear-cut strain dependency in the enzymic activities assayed.In the mutation experiments with hepatic S9 samples, the examination of DAB and quinoline revealed a marked strain difference when S9 samples prepared from PCBs-pretreated and PB-plus-5,6-BF-induced rats were used: the S9 sample from Fischer rats was available for activating the two pre-mutagens to directly acting mutagens. No marked difference in the metabolic activation of the remaining 7-pre-mutagens was observed on other S9 preparations.In examinations of mutagenicity activities with the use of three inhibitors, the two S9 preparations made with the two induction methods showed inhibition profiles closely similar to each other. However, there were minor differences in the profiles by these inhibitors.From these findings it was concluded that Fischer rat-liver S9 is useful for detecting mutagens in the metabolic activation test, when induction by PB plus 5,6-BF was used in the Ames Salmonella test.  相似文献   

8.
The genetics of induction of hepatic and lung aryl hydrocarbon hydroxylase (AHH) have been studied in Af/Ki and AKR/Ki mice and in their F1 and F2 progeny after administration of 3-methylcholanthrene (3MC). Furthermore, the induction of AHH was investigated using the fetal liver explant model system with 3MC, trans-1,2-dihydroxy-3MC, and 4'-bromoflavone as the inducers. The results obtained with the above strains were contrasted with those from the C57BL/6Ki, DBA/2+Ki, and their crosses. The present investigation revealed a complex pattern of inheritance of basal and inducible AHH in lung and liver of AKR/Ki and Af/Ki, with a poor correlation between lung and liver. Hepatic AHH was not fully inducible in the F1 hybrids, while the frequency distribution function in the F2 mice was suggestive of more than two distinct classes.  相似文献   

9.
The activities of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-deethylase (PROD), 7-ethoxycoumarin-O-deethylase (ECOD) and aromatic hydrocarbon hydroxylase (AHH) were measured in hepatic microsomes from male and female Wistar rats and Syrian golden hamsters in order to probe the basal activity and the inducibility by phenobarbital (PB) and 3-methylcholanthrene (MC) of different P-450 isoenzymes. The basal activities of EROD and ECOD, but not PROD and AHH, were higher in male hamsters than in male rats. No sex-related difference in enzyme activities was observed with hamsters, whereas male rats had a higher ECOD and AHH activity than female rats. Induction by PB led to a 450-fold and 250-fold increase in PROD activity in male and female rat liver microsomes, respectively, while MC had a more pronounced inductive effect on EROD activity in this species. In hamsters, EROD activity was induced by MC but not by PB. Unexpectedly PROD activity in male and female hamster liver microsomes was only moderately induced by PB, the extent being lower than on induction by MC. Therefore, the activity of PROD, which is useful as a specific enzymatic assay for P-450 IIB in the rat liver, cannot be used to probe PB-like inducers in the hamster liver.  相似文献   

10.
The synthesis of all possible laterally-substituted polybrominated biphenyl (PBB) congeners containing two para bromines is described. Using enzymic, electrophoretic and ligand-binding assays that distinguish between phenobarbitone(PB)- and 3-methylcholanthrene(MC)-type inducers, the synthetic PBBs were evaluated as inducers of liver microsomal drug-metabolizing enzymes in the immature male Wistar rat. 4,4'-Dibromobiphenyl resembled PB in its mode of induction whereas all the meta-brominated derivatives of 4,4'-dibromobiphenyl, namely 3,4,4'-tri, 3,4,4',5-tetra-, 3,3', 4,4'-tetra-, 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexabromobiphenyl, resembled MC in their mode of induction. The results obtained with 3,4,4'-tribromobiphenyl demonstrate that, in contrast to the polychlorinated biphenyls (PCBs), a single meta halogen substituent is sufficient to abolish the PB-type characteristics of 4,4'-dibromobiphenyl and convert it to a strictly MC-type inducer. PBBs which induce AHH activity must be substituted at both para positions and at one, two, three or four meta positions. Ortho-substitution of PBBs which contain only lateral bromine groups may also give compounds which are aryl hydrocarbon hydroxylase (AHH) inducers. One of the MC-type PBBs, namely 3,3',4,4'-tetrabromobiphenyl, which has been tentatively identified in the commercial PBB mixture, fireMaster BP-6, was at least 50 times more potent as an inducer of AHH activity than the commercial PBB mixture. The induction of AHH by 3,3',4,4'-tetrabromobiphenyl was accompanied by a dose-dependent decrease in both thymus and spleen weights. The thymus and/or spleen weights were decreased in rats treated with the other MC-type PBBs which further supports the correlation between the toxicity of the PBBs and their ability to induce AHH.  相似文献   

11.
In order to elucidate the role of metabolic activation of the synthetic estrogen, diethylstilbestrol (DES), in the mechanism of liver tumor formation in male Syrian golden hamsters observed after combined treatment with DES and 7,8-benzoflavone (7,8-BF), the metabolism of DES and the concentrations and activities of various drug-metabolizing enzymes were studied in hamster liver microsomes after various pretreatments. The levels of the hepatic aromatic hydrocarbon (Ah) receptor were also determined. Pretreatment with 7,8-BF increased both P450 and cytochrome b5 levels, whereas phenobarbital (PB) and 3-methylcholanthrene (MC) induced P450 but not cytochrome b5. 7,8-BF pretreatment increased 7-ethoxyresorufin-O-deethylase (EROD) 3-fold and 7-pentoxyresorufin-O-dealkylase (PROD) 2.5-fold, whereas aromatic hydrocarbon hydroxylase (AHH) and 7-ethoxycoumarin-O-deethylase (ECOD) activities were only slightly induced by 7,8-BF. MC pretreatment increased EROD 8-fold and PROD activity 7-fold, whereas PB pretreatment enhanced AHH 4.5-fold and PROD activity 4-fold. In contrast to PB, pretreatment with 7,8-BF and MC reduced the oxidative metabolism of DES in hepatic microsomes, but the pattern of metabolites was identical with that in untreated controls. Treatment of hamsters with the inducers changed the hepatic Ah receptor level. PB and MC-pretreatment resulted in an increase of the receptor level 1.5-fold and 1.3-fold, respectively, whereas 7,8-BF-pretreatment leads to a 1.5-fold decrease. The dissociation constant Kd is 170 nM for the reaction of 7,8-BF with the hamster Ah receptor compared to 70 nM for 5,6-BF and 38 nM for 2,3,7,8-tetrachlorodibenzofuran (TCDF). The Kd-value is 3.6 nM for TCDF with the rat receptor protein. It is concluded from these data that metabolic activation of DES is not involved in the mechanism of hepatocarcinogenesis in this animal tumor model.  相似文献   

12.
When aromatic hydrocarbon (Ah)-responsive and -non-responsive strains of mice were pretreated with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), vitamin C reduced the microsomal aryl hydrocarbon hydroxylase (AHH) activity. The AHH inhibitors 7,8-benzoflavone (7,8-BF) and 3-methylsulfonyl-3',4,4',5-tetrachlorobiphenyl (3-MSF-3',4,4',5-tetraCB) showed various inhibitory effects depending upon the types of microsomes, whereas vitamin C exhibited inhibition irrespective of the types of microsomes. 7,8-BF and 3-MSF-3',4,4',5-tetraCB as well as vitamin C suppressed the reverse mutation of the Salmonella typhimurium tester strains TA98 and TA100 induced by benzo[a]pyrene.  相似文献   

13.
The elevation of aryl hydrocarbon hydroxylase by various microsomal enzyme inducers in mouse tissues from five inbred strains was examined in vivo and in fetal liver expiants. The magnitude of 3-methylcholanthrene- or β-naphthoflavone-inducible AHH activities in the intact animal varied greatly with the tissue and strain—from no induction in the liver and less than a 2- to 3-fold increase in the lung of DBA/2+ and AKR mice to 4- to 5- and 6- to 7-fold elevation, respectively, in the liver and lung of C57BL mice. Treatment of At or C3H+ mice with these inducers increased AHH activity in liver and lung to levels which were intermediate between those observed with tissues from DBA/2+ and C57BL mice. These strain-specific differences in the expression of AHH induction in response to polycyclic hydrocarbons and flavones were also present in fetal liver expiants and were measurable as early as 6 days before parturition. In expiants derived from polycyclic hydrocarbon-“responsive” strains, the extent of enzyme induction was greatest with 4′-bromoflavone, less with β-naphthoflavone and least with 3-methylcholanthrene. Trans-1, 2-dihydroxy-3-methylcholanthrene was about twice as effective in this regard as the parent compound 3-methylcholanthrene. Among expiants from 3-methylcholanthrene-“resistant” strains (DBA/2+, AKR), a disparity in the effects of different classes of compounds was apparent: the flavone derivatives induced aryl hydrocarbon hydroxylase activity from DBA/2+ and AKR expiants by 2- to 3-fold despite the absence of polycyclic hydrocarbon induction in these cultures. Furthermore, although phenobarbital was a comparatively weak inducer under the conditions used in these experiments, this substance stimulated aryl hydrocarbon hydroxylase activity from 3-methylcholanthrene-“responsive” and -“resistant” explants by similar degrees (i.e., about 30%). The results are discussed in the light of previous suggestions on the genetically determined regulation of aryl hydrocarbon hydroxylase induction in mouse tissues.  相似文献   

14.
The effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on the aryl hydrocarbon hydroxylase (AHH) activities in the liver, lung and skin of rats and mice have been studied to examine the possible mechanisms of the anticarcinogenic actions of these compounds. Both compounds inhibit the hydroxylase activities of hepatic microsomes and nuclei, with BHA a more potent inhibitor than BHT. The AHH of lung microsomes is inhibited to a lesser extent by BHA and BHT than that of the liver. The AHH activities of both liver and lung microsomes become less susceptible to the inhibition after pretreatment of the animals with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) but phenobarbital (PB) pretreatment does not produce such an effect. In skin homogenates, however, the AHH activities of control rats and mice are not inhibited by BHA and BHT. The only skin sample which is inhibited by BHA and BHT is that from TCDD-pretreated mice. It has been established that the extent of inhibition with different samples is related to the concentration of BHA in the incubation but not to the amounts or specific activities of microsomes used. Double reciprocal plots suggest that BHA exerts a mixed inhibition on the hydroxylase of liver microsomes with a Ki of 7.7 μM. Analysis of the metabolites of benzo[a]pyrene (BP) shows that BHA inhibits the formation of various metabolites uniformly without changing the regio-selectivity of the enzyme system. The mechanism of inhibition has also been studied with a reconstituted AHH system consisting of cytochrome P-450 (P-450), reductase and phospholipid. The system with P-450 isolated from PB-induced microsomes is inhibited to a much greater extent than that with MC-induced P-450. The results indicate that the inhibitory action of BHA is dependent on the species of the animal, tissue types and treatment with inducers.  相似文献   

15.
Factors for efficiency of the Salmonella/microsome mutagenicity assay.   总被引:1,自引:0,他引:1  
Factors were studied which modify the enzymatic capacity of mouse liver microsomal mixed-function oxidase to convert vinylidene chloride (1.1-dichloroethylene) (VDC) into mutagens in the Salmonella/microsome mutagenicity test. A microsomal fraction incorporated in soft agar layer converted VDC into mutagens during 7 h at a constant rate; these were detected with S. typhimurium TA100. In absence of VDC the enzymatic activity declined gradually to nil after 14 h of incubation at 37 degrees C. The presence of EDTA greatly enhanced the microsome-mediated mutagenicity of VDC and led to prolonged enzymatic viability, but only when liver fractions from phenobarbitone (PB) pretreated mice were used. The efficiency of the plate incorporation assay for the detection of mutagens is discussed in comparison with assays in liquid suspension.  相似文献   

16.
F R Ampy  A Asseffa 《Cytobios》1988,55(221):87-94
Previous investigations with BALB/c mice have demonstrated that no sex-related differences exist in the ability of liver microsomal fractions (S-9) to biotransform dimethylnitrosamine (DMN) to its active mutagenic metabolites as evidenced by bacterial screening assays. In contrast, kidney microsomal enzymes from adult male BALB/c mice and not from females, castrates, and immature animals, were capable of activating DMN. The present study was designed to test the effects of testosterone and oestradiol on DMN bioactivation by hepatic or renal microsomal enzymes. Mutagenic assays were performed using liver and kidney microsomal enzymes with the histidine deficient mutant Salmonella typhimurium TA100. Results indicate that testosterone treatment of female BALB/c mice resulted in an increase in the ability of their renal microsomal enzymes to metabolize DMN to its active mutagenic intermediates. Renal microsomal enzymes from female mice treated with 17 beta-oestradiol had no effect on DMN metabolism. However, the ability of the renal microsomal enzymes treated with 17 beta-oestradiol to bioactivate DMN was significantly decreased in males.  相似文献   

17.
When aromatic hydrocarbon (Ah)-responsive and -non-responsive strains of mice were pretreated with 3-methylcholanthrene (MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), vitamin C reduced the microsomal aryl hydrocarbon hydroxylase (AHH) activity. The AHH inhibitors 7,8-benzoflavone (7,8-BF) and 3-methylsulfonyl-3′,4,4′,5-tetrachlorobiphenyl (3-MSF-3′,4,4′,5-tetraCB) showed various inhibitory effects depending upon the types of microsomes, whereas vitamin C exhibited inhibition irrespective of the types of microsomes. 7,8-BF and 3-MSF-3′,4,4′,5-tetraCB as well as vitamin C suppressed the reverse mutation of the Salmonella typhimurium tester strains TA98 and TA100 induced by benzo[a]pyrene.  相似文献   

18.
Synchronous fluorescence spectrophotometry (SFS), developed to study benzo[a]pyrene-7,8-diol-9,10-epoxide(BPDE)-DNA, was used to measure the in vivo formation of DNA-adducts in genetically responsive C57BL/6 (B6) and non-responsive DBA/2 (D2) mice. Treatment with cigarette smoke by inhalation for 3-16 days, or i.p. injection of cigarette smoke condensate or neutral fraction did not lead to detectable levels of BPDE-DNA-adducts in either lungs or liver, although aryl hydrocarbon hydroxylase (AHH) activity, an indicator of benzo[a]pyrene (BP) metabolism, was clearly induced in lungs of B6 mouse. A dose-dependent amount of BPDE-DNA-adducts in lung and somewhat less in liver was found after i.p. injection with BP (20-80 mg/kg). Mice treated with vehicle or 4 mg/kg of BP were negative for adducts by SFS. In B6 mice AHH was induced both in lungs and livers while there was no AHH induction in D2 mice although the levels of BPDE-DNA-adducts were somewhat higher than in B6 mice. Thus, no clear correlation seems to exist between AHH activity and the formation of BPDE-DNA-adducts. Also, according to our results SFS can be used to quantitate adduct-formation in in vivo animal studies.  相似文献   

19.
To evaluate the predictive value of serum antipyrine half-life AP(T1/2) as an index of hepatic carcinogen metabolism, groups of C57BL/6 and DBA/2 mice were treated with various inducers and inhibitors of cytochrome P-450-dependent monooxygenases (pregnenolone-16 alpha-carbonitrile (PCN), phenobarbital (PB), 5,6-benzoflavone (5,6-BF), 3-methylcholanthrene (MC), disulfiram (DIS), 7,8-BF). Groups of mice were also given ethanol (3% in drinking water) for 12 days. Within each group, mean serum AP-(T1/2) was compared with (i) the in vitro activity of hepatic microsomal benzo[alpha]pyrene (BP) 3-hydroxylase, 2-acetylaminofluorene (AAF)-N-hydroxylase and aldrin monooxygenase, and (ii) the liver S9-mediated mutagenicity of aflatoxin B1 (AFB), trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene (BP 7,8-diol), 2-acetylaminofluorene and N-nitrosomorpholine (NMOR) in Salmonella typhimurium strains. Serum AP(T1/2) was only correlated negatively with the activity of BP 3-hydroxylase (P less than 0.001) and aldrin monooxygenase (P less than 0.001). No statistically significant correlation was found between serum AP(T1/2) and liver S9-mediated mutagenicity for any of the four carcinogens. On the basis of these results, we conclude that serum AP(T1/2) may not be a reliable index of the capacity of liver to convert carcinogens into reactive intermediates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号