首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isobutyrate-1-(14)C and l-isoleucine-U-(14)C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the (14)C incorporated into the surface lipids was found in the C(29) paraffin and derivatives, whereas more than two-thirds of the (14)C from straight chain precursors are usually found in these compounds. The small amount of (14)C incorporated into the paraffin fraction was found in the n-C(29) paraffin rather than branched paraffins showing that the (14)C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C(16) acid which was formed from both branched precursors, isoleucine-U-(14)C gave rise to branched C(15), C(17), and C(19) fatty acids, and isobutyrate-1-(14)C gave rise to branched C(16) and C(18) acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C(19) could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not.  相似文献   

2.
In isolated tobacco leaves l-valine-U-14C gave rise to labeled even-numbered isobranched fatty acids containing 16 to 26 carbon atoms and iso C29, iso C31, and iso C33 paraffins. l-Isoleucine-U-14C on the other hand produced labeled odd-numbered anteiso C17 to C27 fatty acids and anteiso C30 and C32 paraffins. Trichloroacetic acid inhibited the incorporation of isobutyrate into C20 and higher fatty acids and paraffins without affecting the synthesis of the C16 and C18 fatty acids. Thus the very long branched fatty acids are biosynthetically related to the paraffins. In Senecio odoris leaves acetate-1-14C was incorporated into the paraffins (mainly n-C31) only in the epidermis although acetate was readily incorporated into fatty acids in the mesophyll tissue. Similarly only the epidermal tissue incorporated acetate into fatty acids longer than C18 suggesting that the epidermis is the site of synthesis of both paraffins and the very long fatty acids. In broccoli leaves n-C12 acid labeled with 14C in the carboxyl carbon and 3H in the methylene carbons was incorporated into C29 paraffin without the loss of 14C relative to 3H. Since n-C18 acid is known to be incorporated into the paraffin without loss of carboxyl carbon these results suggest that the condensation of C12 acid with C18 acid is not responsible for n-C29 paraffin synthesis in this tissue. Thus all the experimental evidence thus far obtained strongly suggests that elongation of fatty acids followed by decarboxylation is the most likely pathway for paraffin biosynthesis in leaves.  相似文献   

3.
Lycopersicon pennellii Corr. (D'Arcy) an insect-resistant, wild tomato possesses high densities of glandular trichomes which exude a mixture of 2,3,4-tri-O-acylated glucose esters that function as a physical impediment and feeding deterrent to small arthropod pests. The acyl moieties are branched C4 and C5 acids, and branched and straight chain C10, C11, and C12 acids. The structure of the branched acyl constituents suggests that the branched chain amino acid biosynthetic pathway participates in their biosynthesis. [14C]Valine and deuterated branched chain amino acids (and their oxo-acid derivatives) were incorporated into branched C4 and C5 acid groups of glucose esters by a process of transamination, oxidative decarboxylation and subsequent acylation. C4 and C5 branched acids were elongated by two carbon units to produce the branched C10-C12 groups. Norvaline, norleucine, allylglycine, and methionine also were processed into acyl moieties and secreted from the trichomes as glucose esters. Changes in the acyl composition of the glucose esters following sulfonylurea herbicide administration support the participation of acetohydroxyacid synthetase and the other enzymes of branched amino acid biosynthesis in the production of glucose esters.  相似文献   

4.
The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of iso-branched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2‰, respectively. The C20–21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6‰, respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3‰ relative to C source. In contrast, biomass was depleted by 19.7‰ when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3‰). The depletion in the C20–21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.  相似文献   

5.
Seven-day-old leek seedlings actively synthesize lipids in vivo from [1-14C]acetate, both in the light and in the dark. In the dark, phospholipid synthesis is more effective than galactolipid synthesis. Whatever the time of acetate incorporation by the etiolated seedlings, very long chain fatty acids having from 20 to 26 carbon atoms are found in all the polar lipids, including the acyl-CoAs. All of the labelled very long chain fatty acids incorporated into the polar lipids are saturated. On the other hand, the labelled C18-fatty acids are unsaturated in phospholipids and galactolipids and almost no label is found in the saturated or unsaturated C18-fatty acids of the acyl-CoAs.  相似文献   

6.
Biosynthetic activity for mycolic acid occurred in the fluffy layer fraction but not in the 5000g supernatant of Bacterionema matruchotii. With [1-14C]palmitic acid as precursor for the in vitro system, the predominant product was identified as C32:0 mycolic acid by radio-gas-liquid chromatographie (radio-GLC) and gas chromatographic/mass spectroscopic analyses; if [1-14C]stearic acid was used, two major radioactive peaks appeared on GLC: one corresponding to the peak of (C34:0 + C34:1) mycolic acids and the other to (C36:0 + C36:1) mycolic acids. By pyrolysis/radio-GLC analysis, C32:0 mycolic acid synthesized by [1-14C]palmitic acid was pyrolyzed at 300 °C to form palmitaldehyde (the mero moiety) and methyl palmitate (the branch moiety). The pH optimum for the incorporation of [1-14C]palmitate into bacterionema mycolic acids was 6.4 and the reaction required a divalent cation. The in vitro system utilized myristic, palmitic, stearic and oleic acids (probably via their activated forms) well as precursors, among which myristic and palmitic acids were more effective than the rest. Avidin showed no effect on the biosynthesis of mycolic acid from 14C-palmitate whereas cerulenin, a specific inhibitor of β-ketoacyl synthetase in de novo fatty acid synthesis, inhibited the reaction at a relatively higher concentration. Thin-layer chromatographic analysis of lipids extracted from the reacting mixture without alkaline hydrolysis showed that both exogenous [1-14] fatty acid and synthesized mycolic acids were bound to an unknown compound by an alkali-labile linkage and this association seemed to occur prior to the condensation of two molecules of fatty acid.  相似文献   

7.
Green nonsulfur-like bacteria (GNSLB) in Yellowstone hot spring microbial mats have been extensively studied and are thought to operate both as photoheterotrophs and photoautotrophs. Here we studied the occurrence and carbon metabolisms of GNSLB by analyzing the distribution and isotopic composition of their characteristic wax ester lipids in four Californian and Nevada hot spring microbial mats at a range of temperatures (37–96°C). The distribution of wax esters varied strongly with temperature. At temperatures between 50–60°C the wax ester composition in each of the four hot spring microbial mats was dominated by C30 to C36 wax esters, consisting of mixtures of C15-C18 n-alkyl and branched fatty acids and alcohols, typical for GNSLB. Stable carbon isotopic analysis showed that these wax esters were only depleted by 5 to 10‰ compared to dissolved inorganic carbon in the overlying water, suggesting that these GNSLB were mainly autotrophic. However, analysis of different depth layers of one microbial mat showed that these GNSLB wax esters were increasingly depleted in 13C with depth, suggesting that photoautotrophy mainly occurred in the top layer of the mat. 13C-depleted C36-C44 wax esters were found in one hot spring at high temperatures (77–96°C) and are likely derived from allochtonous plant waxes. At several lower temperature sites (35–40°C) the wax esters were predominantly composed of C28, C30 and C32 wax esters consisting of mixtures of C14-C16 fatty acids and n-alkanols and were depleted in 13C by 15–20‰ relative to dissolved inorganic carbon, suggesting they may be derived from heterotrophic organisms. Our results indicate that autotrophic GNSLB occur widely in hot springs and that diverse groups of organisms contribute to the pool of wax ester lipids in hot spring environments.  相似文献   

8.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

9.
The synthesis of fatty acids and lipids in Nannochloropsis sp. was investigated by labeling cells in vivo with [14C]-bicarbonate or [14C]-acetate. [14C]-bicarbonate was incorporated to the greatest extent into 16:0, 16:1, and 14:0 fatty acids, which are the predominant fatty acids of triacylglycerols. However, more than half of the [14C]-acetate was incorporated into longer and more desaturated fatty acids, which are constituents of membrane lipids. [14C]-acetate was incorporated most strongly into phosphatidylcholine, which rapidly lost label during a 5-h chase period. The label associated with phosphatidylethanolamine also decreased during the chase period, whereas label in other membrane lipids and triacylglycerol increased. The dynamics of labeling, along with information regarding the acyl compositions of various lipids, suggests that 1) the primary products of chloroplast fatty acid synthesis are 14:0, 16:0, and 16:1; 2) C20 fatty acids are formed by an elongation reaction that can utilize externally supplied acetate; 3) phosphatidylcholine is a site for desaturation of C18 fatty acids; and 4) phosphatidylethanolamine may be a site for desaturation of C20 fatty acids.  相似文献   

10.
To understand more fully organelle membrane assemblage, the synthesis of the first fatty acids by the germinating pea, Pisum sativum, was studied by the incorporation of either tritiated water or acetate-1-14C into lipids by the intact, initially dry seed. After a lag phase, labeling proceeded linearly. This lag phase ended when uptake of water had increased the seed weight to 185% of its original weight. The first fatty acids synthesized were palmitic and stearic followed shortly after by long chain saturated fatty acids (C20-C26). The synthesis of very long chain acids was consistently characteristic of several other seeds in early stages of germination. The majority of the radioactive acids were present in phospholipids and were localized in particulate fractions. The acyl components of phosphatidyl glycerol were highly labeled. The very long chain acids were found predominantly in the waxes. Pulse labeling indicated little turnover of the labeled fatty acids. Evidence is presented indicating that the enzymes for fatty acid synthesis are already present in the dry seed and participate in the synthesis of fatty acids once a critical water content of the seed is achieved.  相似文献   

11.
  • 1.1. The fatty acid composition of the triglyceride fraction of mink milk sampled during mid-lactation (day 28 post partum) from two nursing mink was compared to that of plasma samples and to the fatty acid composition of the feed rations used.
  • 2.2. Chemical analysis of the triglyceride composition of mink milk demonstrated only minute concentrations of fatty acids with a chain length below C14.
  • 3.3. The saturated C16:0- and C18:0-unit fatty acids in mink milk made up for 24–40% of the total amount of fatty acids extracted, the remainder being represented by mono and polyunsaturated long-chain (C16-C24) fatty acids.
  • 4.4. Preliminary in vitro experiments proved the incorporation of14C-labelled glucose, acetate or palmitate into triacylglycerols in cultures of mink mammary tissue to be linear for at least 2 hr.
  • 5.5. The in vitro capacity for de novo fatty acid synthesis in mink mammary tissue using 14C-labelled glucose or acetate was low, i.e. ranging from 0.096–0.109 nmol/g (fresh tissue)/min, and amounted to only about 5% of that obtained in the case of [14C]palmitic acid incubation.
  • 6.6. Following 14C-labeIled acetic or palmitic acid incubation of mink mammary tissue neither desaturation nor chain elongation was observed.
  • 7.7. In response to long-term feeding on rations with two different sources of animal fat (F = fish oil or L = lard) the influence of compositional changes in dietary neutral lipids on the fatty acid composition of the lipids of mink milk is discussed.
  相似文献   

12.
Phospholipid and acid composition of 5 strains of ‘true’ Nocardia and 4 strains of nocardoid bacteria have been studied. A great homogeneity was found in all the Nocardia species: phospholipids consist of cardiolipin, phosphatidyl ethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Streptomyces (Nocardia) mediterranei did not contain phosphatidylinositol and Oerskovia (Nocardia) turbata had no phosphatidyl ethanolamine. The fatty acid composition of these phospholipids was determined and was found different in Nocardia and nocardoid species. Nocardia were rich in straight chain fatty acids and tuberculostearic acid while the phospholipids of nocardoid bacteria contained greater amounts of branched fatty acids. The fatty acids from acetone soluble lipids consisted of hydroxy and non-hydroxy compounds. Hydroxy acids were found in Nocardia which contained nocardic acids: high MW β-hydroxy α-branched acids and in S. mediterranei which contained β-hydroxy acids with 15–17 carbon atoms. Non-hydroxy acids were essentially palmitic and tuberculostearic acids in Nocardia species while S. mediterranei and O. turbata contained great amounts of iso acids from C14 to C17. Phospholipid and acid composition are discussed as criteria of taxonomic classification of Nocardia and related Actinomycetes.  相似文献   

13.
Long-chain 14C-fatty acids applied to the surface of expanding spinach leaves were incorporated into all major lipid classes. When applied in diethyleneglycol monomethyl ether solution, as done by previous workers, [14C]palmitic acid uptake was much lower than that of [14C] oleic acid. However, when applied in a thin film of liquid paraffin the rate of [14C] palmitic acid metabolism was rapid and virtually complete. Considerable radioactivity from [14C]palmitate incorporated into lipids following either application method gradually appeared in polyunsaturated C16 fatty acids esterified to those molecular species of galactolipids previously thought to be made using only fatty acids synthesized and retained within the chloroplast. Evidence for the incorporation of radioactivity from exogenous [14C]oleate into those same molecular species of galactolipids was less compelling. The unexpected availability of fatty acids bound to extrachloroplastidal lipids for incorporation into galactolipids characteristically assembled entirely within the chloroplast emphasizes the need to reassess interrelations between the “prokaryotic” and “eukaryotic” pathways of galactolipid formation.  相似文献   

14.
The cyanobacteriumSynechocystis PCC 6803 was grown photoautotrophically in an inorganic medium at constant growth temperatures of 20, 38 (control) or 43°C for 9 h. The up and down-shift of cultivation temperature decreased the growth as measured by culture absorbance and chlorophylla content. However, high temperature slightly increased the oxygen evolution while temperature lower than control inhibited oxygen evolution during the whole incubation period. The protein synthesis studied by14C-labeled protein declined under low temperature by about 50%. The fatty acid pattern is characterized as lacking in C20/C22 acids but containing large amounts of C16 and C18 polyunsaturated fatty acids, 16:2 and 18:3 in particular. The lower temperature increased the percentage of monounsaturated fatty acids while higher temperature increased the saturated fatty acid content in total lipids and lipid classes studied.  相似文献   

15.
The fatty acid composition of five strains ofCorallococcus coralloides and three reference species ofMyxococcus were determined by gas-liquid chromatography. Methyl esters of fatty acid containing from 12 to 22 carbon atoms were identified. The major fatty acids present were C15 and C17 saturated branched chain, and both C16 saturated and unsaturated straight chain acids. The C17 saturated branched and straight chain acids, which were in valuable concentration in species ofMyxococcus, were not, however, detected in all strains ofC. coralloides. The application of these results in the distinction ofC. coralloides from the genusMyxococcus is discussed.  相似文献   

16.
Oo KC  Stumpf PK 《Plant physiology》1983,73(4):1033-1037
The metabolism of 14C-labeled fatty acids and triacylglycerols was followed in intact germinating oil palm seedlings as well as in tissue slices. In the germinating seedling, the shoot contained a normal pattern of membrane fatty acids (mainly C16, C18:1, C18:2) but the kernel contained about 68% C12 and C14 fatty acids. Haustorium fatty acids were intermediate between the two. [14C]Acetate was actively metabolized by shoot and haustorium slices but not so actively by the kernel. Approximately 9% to 17% was converted to water-soluble substances, 4% to 6% to CO2, and 0.5% to 5.9% to lipids. The fatty acids synthesized in the shoot and haustorium were mainly C16, C18, and C18:1 fatty acids but in the kernel about 18% to 32% of the 14C-fatty acids were C12 fatty acids.

[14C]Lauric acid was absorbed and metabolized by haustorium slices and by the haustorium in intact seedlings; it was partly esterified to triacylglycerols and also converted to water-soluble substances and insoluble tissue material. In contrast, tri-[14C]laurin was absorbed but not metabolized. The haustorium also absorbed other fatty acids but the longer chain (C16 and C18) fatty acids were not esterified or metabolized further. Preincubation of the haustorium with plant hormones or in the presence of kernel tissue did not alter its inactivity towards tri-[14C]laurin.

When tri-[14C]laurin or [14C]lauric acid were injected into the seed or the shoot, there was no movement or radioactivity to other parts of the seedling. When injected into the shoot, but not into the seed, tri-[14C] laurin was hydrolyzed and partly metabolized to water-soluble substances.

  相似文献   

17.
《Insect Biochemistry》1990,20(2):149-156
The precursors and directionality of synthesis of the methyl branched cuticular hydrocarbons and the female contact sex pheromone, 3,11-dimethyl-2-nonacosanone, of the German cockroach, Blattella germanica, were investigated by radiotracer and carbon-13 NMR techniques. The amino acids [G-3H]valine, [4,5-3H]isoleucine and [3,4-14C2]methionine labeled the hydrocarbon fraction in a manner indicating that the carbon skeletons of all three amino acids serve as the methyl branch group donor. The incorporation of [1,4-14C2]- and [2,3-14C2]succinates into the hydrocarbon and acylglycerol/polar lipid fractions indicated that succinate also served as a precursor to methylmalonyl-CoA. Carbon-13 NMR analyses showed that [1-13C]propionate labeled the carbon adjacent to the tertiary carbon, and, for the 3,x-dimethylalkanes, that carbon-4 and not carbon-2 was enriched. [1-13C]Acetate labeled carbon-2 of these hydrocarbons. This indicates that the methyl branching groups of the 3,x-dimethylalkanes were inserted early in the chain elongation process. [3,4,5-13C3]Valine labeled the methyl, tertiary and carbon adjacent to the tertiary carbon of the methyl branched alkanes. Thus, the methyl branched hydrocarbon was formed by the insertion of methylmalonyl units derived from propionate, isoleucine, valine, methionine and succinate early in chain elongation.  相似文献   

18.
Biogas production has been shown to be inhibited by branched chain fatty acids (isobutyric, isovaleric) produced in the digester by cellulolytic organisms. Performance of these mixed cellulolytic cultures isolated at 25°C (C25) and at 35° (C35) in a batch digester using cattle manure confirmed that C35, which forms mainly straight chain fatty acids from cellulose was more suitable for use as an inoculum than C25 which formed predominantly branched chain fatty acids. Reconstitution of cellulolytic culture C35 and mixed methanogens M35 almost doubled both the amount and rate of methane production. Cellulolytic culture was useful in pretreatment of water hyacinth prior to its use as a substrate for methane generation A method for preservation and transportation of mixed cellulolytic culture for use as an inoculum in the digester is described.  相似文献   

19.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

20.
Strain JC90T was isolated from a soda lake in Lonar, India. Strain JC90T maintains its external pH to 8.5 and participates in halite formation. Based on 16S rRNA gene sequence similarity studies, strain JC90T was found to belong to the genus Salinicoccus and is most closely related to “Salinicoccus kekensis” K164T (99.3 %), Salinicoccus alkaliphilus T8T (98.4 %) and other members of the genus Salinicoccus (<96.5 %). However Strain JC90T is <36 % related (based on DNA–DNA hybridization) with the type strains of “S. kekensis” K164T and S. alkaliphilus T8T. The DNA G+C content of strain JC90T was determined to be 46 mol %. The cell-wall amino acids were identified as lysine and glycine. Polar lipids were found to include diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl ethanolamine, an unidentified glycolipid and unidentified lipids (L1,2). Major hopanoids of strain JC90T were determined to be bacterial hopane derivatives (BHD1,2), diplopterol, diploptene and two unidentified hopanoids (UH1,2). The predominant isoprenoid quinone was identified as menaquinone (MK-6). Anteiso-C15:0 was determined to be the predominant fatty acid and significant proportions of iso-C14:0, C14:0, iso-C15:0, C16:0, iso-C16:0, iso-C17:0, anteiso-C17:0 and C18:02OH were also detected. The results of physiological and biochemical tests support the molecular evidence and allowed a clear phenotypic differentiation of strain JC90T from all other members of the genus Salinicoccus. Strain JC90T is therefore considered to represent a novel species, for which the name Salinicoccus halitifaciens sp. nov. is proposed. The type strain is JC90T (=KCTC 13894T =DSM 25286T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号