首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromatographic method for the quantitation of promethazine (PMZ) and its three metabolites in urine employing on-line solid-phase extraction and column-switching has been developed. The column-switching system described here uses an extraction column for the purification of PMZ and its metabolites from a urine matrix. The extraneous matrix interference was removed by flushing the extraction column with a gradient elution. The analytes of interest were then eluted onto an analytical column for further chromatographic separation using a mobile phase of greater solvent strength. This method is specific and sensitive with a range of 3.75–1400 ng/ml for PMZ and 2.5–1400 ng/ml for the metabolites promethazine sulfoxide, monodesmethyl promethazine sulfoxide and monodesmethyl promethazine. The lower limits of quantitation (LLOQ) were 3.75 ng/ml with less than 6.2% C.V. for PMZ and 2.50 ng/ml with less than 11.5% C.V. for metabolites based on a signal-to-noise ratio of 10:1 or greater. The accuracy and precision were within ±11.8% in bias and not greater than 5.5% C.V. in intra- and inter-assay precision for PMZ and metabolites. Method robustness was investigated using a Plackett–Burman experimental design. The applicability of the analytical method for pharmacokinetic studies in humans is illustrated.  相似文献   

2.
A rapid and sensitive method for extracting temazepam from human serum and urine is presented. Free temazepam is extracted from plasma and urine samples using n-butyl chloride with nitrazepam as the internal standard. Temazepam glucuronide is analyzed as free temazepam after incubating extracts with β-glucuronidase. Separation is achieved using a C8 reversed-phase column with a methanol—water—phosphate buffer mobile phase. An ultraviolet detector operated at 230 nm is used and a linear response is observed from 20 ng/ml to 10 μg/ml. The limit of detection is 15.5 ng/ml and the limit of quantitation is 46.5 ng/ml. Coefficients of variation are less than 10% for concentrations greater than 50 ng/ml. Application of the methodology is demonstrated in a pharmacokinetic study using eight healthy male subjects.  相似文献   

3.
Twelve compounds representing procarbazine, seven metabolites, and an internal standard were analyzed by gas chromatography—mass spectrometry on a 3% OV-1 column. Procarbazine and four metabolites were derivatized with acetic anhydride.A sensitive, specific and quantitative assay was established by selected ion monitoring using a synthetic analogue of the drug as an internal standard. The limits of detection were approximately 1 ng/ml of plasma while the limits of quantitation were 10 ng/ml of plasma.Studies on the degradation of procarbazine - HCl in 0.05 M phosphate buffer (pH 7.4) were compared to in vivo studies. At 1 h after incubation of procarbazine - HCl in buffer, the azo and aldehyde metabolites were detected in the highest concentrations representing 27.2% and 20.3% of total drug and metabolites. In the in vivo studies, analyses of rat plasmas indicated that 1 h after an oral dose of procarbazine - HCl, the aldehyde metabolite represented 72% of the total drug and metabolites, and that relatively little of the azo metabolite was present.  相似文献   

4.
This paper describes a high-performance liquid chromatographic method with ultraviolet absorbance detection at 304 nm for the determination of 6-chloro-5-(1-naphthyloxy)-2-methylthio benzimidazole (αBIOF10) — a new fasciolicide agent — and its sulphoxide (SOαBIOF10), in plasma and urine. It requires 2 ml of biological fluid, an extraction using Sep-Pak cartridges, and methanol for drug elution. Analysis is performed on a μBondapak C18 (10 μm) column, using methanol–acetonitrile–water (40:30:30, v/v) as the mobile phase. Results showed that the assay is sensitive: 12 ng/ml for αBIOF10 and SOαBIOF10 in plasma and 3.6 ng/ml for both compounds in urine. The response was linear between 0.195 and 12.5 μg/ml. Maximum intra-day coefficient of variation was 5.3%. Recovery obtained was 97.8% for both αBIOF10 and SOαBIOF10. In urine, recovery was 99.6% and 93.1% for αBIOF10 and SOαBIOF10 respectively. The method was used to perform a preliminary pharmacokinetic study in two sheep and was found to be satisfactory.  相似文献   

5.
The metabolic oxidation of one of the chloroethyl groups of the antitumour drug ifosfamide leads to the formation of the inactive metabolites 2- and 3-dechloroethylifosfamide together with the neurotoxic metabolite chloroacetaldehyde. A very sensitive capillary gas chromatographic method, requiring only 50 μl of plasma or urine, has been developed to measure the amounts of the drug and the two inactive metabolites in a single run. Calibration curves were linear (r > 0.999) in the concentration ranges from 50 ng/ml to 100 μg/ml in plasma and from 100 ng/ml to 1 mg/ml in urine.  相似文献   

6.
A simple, rapid and reproducible reversed-phase high-performance liquid chromatographic method for the simultaneous determination of benzoic acid (BA), phenylacetic acid (PAA) and their respective glycine conjugates hippuric acid (HA) and phenaceturic acid (PA) in sheep urine is described. The procedure involves only direct injection of a diluted urine sample, thus obviating the need for an extraction step or an internal standard. The compounds were separated on a Nova-Pak C18 column with isocratic elution with acetate buffer (25 mM, pH 4.5)—methanol (95:5). A flow-rate of 1.0 ml/min, a column temperature of 35°C and detection at 230 nm were employed. These conditions were optimized by investigating the effects of pH, molarity, methanol concentration in the mobile phase and column temperature on the resolution of the metabolites. The total analysis time was less than 15 min per sample. At a signal-to-noise ratio of 3 the detection limits for ten-fold diluted urine were 1.0 μg/ml for BA and HA and 5.0 μg/ml for PAA and PA with a 20-μl injection.  相似文献   

7.
We applied micellar electrokinetic capillary chromatography to simultaneous separation and determination of nitrazepam and its major metabolites, 7-aminonitrazepam and 7-acetamidonitrazepam, in spiked urine. Prior to electrophoresis, the three compounds were successfully extracted from the spiked urine with commercial disposable solid-phase cartridges. The optimum running buffer for the separation was prepared by combining 85 parts of 60 mM sodium dodecyl sulphate—6 mM phosphate—borate, adjusted to pH 8.5, with 15 parts of methanol. The separation order, completed within 25 min, was 7-aminonitrazepam > 7-acetamidonitrazepam > nitrazepam, at an applied potential of 20 kV. We obtained reproducible electropherograms in successive repetitions, and few other peaks or interferences appeared in the electropherogram. The detection limits of the three compounds were 50–100 pg (0.1–0.2 μg/ml of analyte in spiked urine), and the recoveries were 78.9–100.8% for 1 μg/ml and 84.1–100.3% for 5 μg/ml. The application of this method to forensic or clinical samples is demonstrated.  相似文献   

8.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

9.
An analytical method for the detection in biological samples of the novel tricyclic compound adosupine (10-acetoamido-5-methyl-5,6-dihydro-11H-dibenzo[b,e]azepin-6,11-dione), which is capable of influencing various forms of urinary bladder hyperreflexia has been developed using high-performance liquid chromatography with UV detection. Liquid—liquid extraction was used to isolate the parent compound, three metabolites and an analogue (added as internal standard) from plasma and brain of rat. Adosupine was well separated from its three metabolites with 0.01 M disodium hydrogenphosphate—acetonitrile—methanol—nonylamine (59.986:38:2:0.014) at pH 4.5 as mobile phase using a C18 reversed-phase column. The standard curves were linear in the range 50–5000 ng/ml (or ng/g) for adosupine and metabolites in both plasma and brain. The between- and within-assay variations for high and low concentrations of the parent compound and the three metabolites were 8.2–14%. In the range 50–5000 ng/ml (or ng/g) the accuracy of the method was satisfactory, with the relative error always lower than 10%. Analytical recoveries of added adosupine and the three metabolites were higher than 82%. The method has been applied successfully, to investigate the pharmacokinetics of the drug and its distribution in the central nervous system of rats.  相似文献   

10.
A column-switching high-performance liquid chromatographic method has been developed for the simple and sensitive analysis of BO-2727 (I) in human plasma and urine. Plasma samples were diluted with an equal volume of a stabilizer, and the mixture was directly injected onto the HPLC system. The analyte was enriched in a pre-treatment column, while endogenous components were eluted to waste. The analyte was then backflushed onto an analytical column and quantified with ultraviolet detection. Urinary concentrations were determined in a similar way except that the enriched analyte was eluted in the foreflush mode to a cation-exchange column used for chromatographic separation. The standard curves for the drug were linear in the range of 0.05–50 μg/ml in plasma and 0.5–100 μg/ml in urine. The limits of quantification for plasma and urine were found to be 0.05 μg/ml and 0.5 μg/ml, respectively. This method was used to support Phase I clinical pharmacokinetic studies.  相似文献   

11.
High-performance liquid chromatographic methods were developed for the determination of azosemide and its metabolite, M1, in human plasma and urine and rabbit blood and tissue homogenates. The methods involved deproteinization of the biological samples: 2.5 volumes of acetonitrile were used for the determination of azosemide and 1 volume of saturated Ba(OH)2 and ZnSO4 for that of M1. A 50-μl aliquot of the supernatant was injected onto a C18 reversed-phase column in each instance. The mobile phases employed were 0.03 M phosphoric acid—acetonitrile (50:40, v/v) for azosemide and 0.03 M phosphoric acid/0.2 M acetic acid—acetonitrile (83:17, v/v) for M1. The flow-rate was 1.5 ml/min in both instances. The column effluent was monitored by ultraviolet detection at 240 and 236 nm for azosemide and M1, respectively. The retention times for azosemide and M1 were 6.0 and 8.3 min, respectively. The detection limits for both azosemide and M1 in both human plasma and urine were 50 ng/ml. The coefficients of variation of the assay were generally low (below 11.0%) for plasma, urine, blood and tissue homogenates. No interferences from endogenous substances or other diuretics tested were observed.  相似文献   

12.
A rapid, sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of cibenzoline (Cipralan TM) in human plasma and urine. The assay involves the extraction of the compound into benzene from plasma or urine buffered to pH 11 and HPLC analysis of the residue dissolved in acetonitrile---phosphate buffer (0.015 mol/1, pH 6.0) (80:20). A 10-μ ion-exchange (sulfonate) column was used with acetonitrile—phosphate buffer (0.015 mol/1, pH 6.0) (80:20) as the mobile phase. UV detection at 214 nm was used for quantitation with the di-p-methyl analogue of cibenzoline as the internal standard.The recovery of cibenzoline in the assay ranged from 60 to 70% and was validated in human plasma and urine in the concentration range of 10–1000 ng/ml and 50–5000 ng/ml, respectively. A normal-phase HPLC assay was developed for the determination of the imidazole metabolite of cibenzoline. The assays were applied to the determination of plasma and urine concentrations of cibenzoline and trace amounts of its imidazole metabolite following oral administration of cibenzoline succinate to two human subjects.  相似文献   

13.
A gas chromatographic method for the simultaneous determination of four glucuronides (metabolites) of trimetozine excreted in human urine is described. The methodinvolves pretreatment of the urine specimen [i.e. removal of interfering substances by solvent extraction, desalting on an ion-exchange (Amberlite XAD-2) column], and permethylation of glucuronides by reaction with methylsulfinyl carbanion and methyl iodide. The permethylated derivatives were submitted to gas chromatographic separation on an OV-17 column, and their structures were investigated by subsequent gas chromatographic—mass spectrometric analysis. The minimum detectable concentration of each glucuronide is 5 μg/ml when 1 ml of urine is used. The utility of the present method is successfully demonstrated by determining the urinary concentration of four glucuronides following oral administration of trimetozine to human subjects.  相似文献   

14.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

15.
A method is described for the simple and simultaneous determination of tulobuterol and its metabolites in human urine by gas chromatography-mass spectrometry. Quantification was achieved by single-ion monitoring at m/e 86 derived from trimethylsilyl-tulobuterol and its metabolites using a column packed with a mixed phase, 2% OV-1–2% QF-1 (1 : 1, w/w). The detection limits were estimated to be 2 ng/ml in urine for tulobuterol and 5 ng/ml for metabolites, respectively.  相似文献   

16.
We report a method for the simultaneous determination of methamphetamine, amphetamine and their hydroxylated metabolites in plasma and urine samples using a GC-NPD system. The analytical procedures are: (1) adjust the sample to pH 11.5 with bicarbonate buffer, saturate with NaCl and extract with acetate; (2) back-extract the amines in the ethyl acetate fraction with 0.1 M HCl; (3) adjust the pH of the acid fraction to 11.5 and follow by extraction in ethyl acetate; (4) reduce the volume of ethyl acetate under nitrogen and derivatize the concentrate with trifluoroacetic anhydride or heptaflourobutyric anhydride before the GC analysis. The derivatives were separated on a GC-NPD system equipped with a HP-5 column of 25 m×0.32 m I.D. and a 0.52 μm film of 5% phenylmethylsilicone. The detection limit (taking a signal-to-noise ratio of 2) of heptafluorobutyl derivatives of methamphetamine and its metabolites in plasma and the trifluoroacetyl derivatives in urine was 1 ng/ml (22 pg on column). The limit of quantitation of the heptafluorobutyl derivatives in the plasma was 1 ng/ml (22 pg on column), and that of the trifluoroacetyl derivatives in urine was 20 ng/ml (73 pg on column). The between-day variation was from 0.9 to 17.4% and within-day variation from 0.9 to 8.3%. This method was used successfully in the quantitative determination of methamphetamine and its p-hydroxylated metabolites in the plasma and urine of human subjects.  相似文献   

17.
Analytical methods are described for the selective, rapid and sensitive determination of R- and S-apomorphine, apocodeine and isoapocodeine and the glucuronic acid and sulfate conjugates in plasma and urine. The methods involve liquid-liquid extraction followed by high-performance liquid chromatography with electrochemical detection. The glucuronide and sulfate conjugates are determined after enzymatic hydrolysis. For the assay of R- and S-apomorphine a 10 μm Chiralcel OD-R column is used and the voltage of the detector is set at 0.7 V. The mobile phase is a mixture of aqueous phase (pH 4.0)-acetonitrile (65:35, v/v). At a flow-rate of 0.9 ml min−1 the total run time is ca. 15 min. The detection limits are 0.3 and 0.6 ng ml−1 for R- and S- apomorphine, respectively (signal-to-noise ratio 3). The intra- and inter-assay variations are <5% in the concentration range of 2.5-25 ng ml−1 for plasma samples, and <4% in the concentration range of 40-400 ng ml−1 for urine samples. For the assay of apomorphine, apocodeine and isoapocodeine, a 5 μm C18 column was used and the voltage of the detector set at 0.825 V. Ion-pairing chromatography was used. The mobile phase is a mixture of aqueous phase (pH 3.0)-acetonitrile (75:25, v/v). At a flow-rate of 0.8 ml min−1 the total run time is ca. 14 min. The detection limits of this assay are 1.0 ng ml−1 for apomorphine and 2.5 ng ml−1 for both apocodeine and isoapocodeine (signal-to-noise ratio 3). The inter-assay variations are 5% in the concentration range of 5-40 ng ml−1 for plasma samples and 7% in the concentration range of 50-500 ng ml−1 for urine samples. The glucuronic acid and sulfate conjugates of the various compounds are hydrolysed by incubation of the samples with β-glucuronidase and sulfatase type H-1, respectively. Hydrolysis was complete after 5 h of incubation. No measurable degradation of apomorphine, apocodeine and isoapocodeine occurred during the incubation. A pharmacokinetic study of apomorphine, following the intravenous infusion of 30 μg kg−1 for 15 min in a patient with Parkinson's disease, demonstrates the utility of the methods: both the pharmacokinetic parameters of the parent drug and the appearance of apomorphine plus metabolites in urine could be determined.  相似文献   

18.
A reversed-phase high-performance liquid chromatographic method for oxazepam in human urine samples has been developed. The sample preparation consists of an enzymatic hydrolysis with β-glucuronidase, followed by a solid-phase extraction process using Bond-Elut C2 cartridges. The mobile phase used was a methanol—water (60:40, v/v) mixture at a flow-rate of 0.50 ml/min. The column was a 3.5 cm × 4.6 mm I.D. C18 reversed-phase column. The detection system was based on a fluorescence post-column derivatization of oxazepam in mixtures of methanol and acetic acid. A linear range from 0.01 to 1 μg/ml of urine and a limit of detection of 4 ng/ml of urine were attained. Within-day recoveries and reproducibilities from urine samples spiked with 0.2 and 0.02 μg/ml oxazepam were 97.9 and 95.0 and 2.1 and 9.4%, respectively.  相似文献   

19.
Phencyclidine and monohydroxy metabolites were measured in human urine using gas chromatography—mass fragmentography with methane chemical ionization. Samples were extracted either untreated or following acid hydrolysis, derivatized with heptafluorobutyric anhydride, separated on a 3% SE-30 column and analyzed by mass fragmentography. The assay was sensitive to ca. 0.01 μg/ml for phencyclidine and ca. 0.05 μg/ml for the metabolites. Urine samples from five human subjects enrolled in a methadone maintenance program who had ingested phencyclidine were analyzed. The phencyclidine concentration ranged from 0.3 to 23.7 μg/ml. The concentrations of metabolites ranged from 0 to 1.8 μg/ml. A new monohydroxy metabolite was detected in the samples, but its structure was not fully elucidated. The specificity of the assay was examined.  相似文献   

20.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号