首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白质工程     
蛋白质工程(Protein Engineering)也称蛋白质的定点突变(site-directed mutagenesis),指的是根据蛋白质结构研究结果,设计一个新蛋白质的氨基酸序列,通过修饰编码原蛋白质的DNA序列,最后创造出新的蛋白质的技术.蛋白质工程是基因工程与蛋白质结构研究互相融合的产物.这一技术开辟了一条改变蛋白质结构的崭新途径,使蛋白质和酶学研究与发展进入了一个新时期.改变蛋白质的结构是研究蛋白质结构与功能的传统方法,如天冬酸氨基甲酰转移酶活性  相似文献   

2.
Sec途径(即分泌途径secretion pathway)是蛋白质转运的主要途径.其中,最为关键的组分之一是SecAATP酶,是蛋白质转运途径中的"动力泵",通过ATP的水解循环驱使蛋白质前体穿过细菌内膜,在细菌中是不可缺少的.我们推测抑制SecAATP酶活性的化合物.必然会在一定程度上抑制蛋白质的转运和分泌.通过绿脓杆菌与大肠杆菌SecA蛋白的互补作用,利用本实验室构建的高效表达SecA蛋白的基因工程菌,建立了SecA蛋白ATP酶活性抑制剂的细胞水平筛选模型.利用所纯化的绿脓杆菌SecA蛋白的ATP酶活测定体系,验证了所建立的细胞水平筛选模型具有一定的特异性.研究结果表明其中两个酯相组分在细胞水平和蛋白水平均具有活性,值得进行深入的研究.  相似文献   

3.
产β-葡萄糖苷酶微生物育种研究进展   总被引:2,自引:0,他引:2  
β-葡萄糖苷酶在纤维素降解方面有着重要的作用,可以把纤维二糖水解成葡萄糖。对产β-葡萄糖苷酶微生物的育种进行了概述,包括自然选育、诱变育种、原生质体育种和基因工程育种等。目前,通过基因工程手段构建工程菌或通过蛋白质工程手段改造酶蛋白,以获得高活性的β-葡萄糖苷酶已成为研究的热点。  相似文献   

4.
刘良式 《遗传》1984,6(2):43-46
dnaB蛋白质是一种依赖于DNA的核昔三磷酸 酶,它的结构复杂多变,用一系列的实验测定,dnaB蛋 白质在ATP和SSB存在下,会和dnaC蛋白质形成 复合物;rmrps可诱导其构型改变,而有利于与单链 DNA相互作用形成复合物;单链DNA或双链DNA 的结合又将dnaB蛋白质上NTPs结合的位点转变为 使N0I'Ps水解的位点,但二者的结合部位不同,因为前 者受rNTPs及其类似物(5'腺普亚胺二磷酸)和Mg2+ 刺激,受ADP, dATP和SSB控制,后者则不受这些 因素影响,因此dnaB蛋白质具有多个结合部位「13、 当用胰蛋白酶进行有控制的水解时,首先失去dnaC蛋 白质结合部位和引发酶结合部位.9 DNA 合成活性消 失,但SSB结合能力和ATP结合能力仍然稳定。序列 分析表明,此时除去dnaB蛋白质的N末端14个氨基 酸残基,分子量从50,000转变为48,000(片段1),这 说明其N末端为前几种功能所必需。进一步将片段I 切断为片段III III (II是片段I的C末端部分,III是N 末端部分),片段II保持依赖于DNA的ATP酶活性, 这说明和dnaC蛋白质结合的部位以及依赖于DNA 的ATP酶活性部位是不同的。  相似文献   

5.
RubisCO的研究进展   总被引:15,自引:0,他引:15  
1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)是调节光合和光呼吸,决定净光合作用的一个关键酶;也是植物可溶性蛋白质中含量最高的蛋白质.该酶广泛存在于植物及一些微生物体内.综述了近年来有关RubisCO的一些研究进展. 包括RubisCO的基本性质、结构与功能、酶基因工程、酶活性调节及其活化酶等.  相似文献   

6.
以克隆乙型肝炎病毒pC/C及C基因为例,报道了在DNA重组中,当目的基因与载体末端不匹配时可采取的一新方法.用内切酶切取的基因片段为平端时,可在含dATP的反应体系中,用Taq酶的末端转移酶活性在其3′末端加上单个碱基(dA)的突出尾;基因片段为3′凹端时,可在含4种dNTP的体系中,利用Taq酶的聚合酶活性先将其末端补平,再经末端转移酶活性在其3′末端加dA尾;末端经此修饰的基因片段可亚克隆至T载体中,再克隆于其他表达载体中.  相似文献   

7.
普那霉素是由始旋链霉菌产生的一种链阳性菌素 类抗生素.目前国外对普那霉素的基因工程研究甚少,国内尚属空白,这阻碍了利用基因工程 的方法来提高普那霉素产量的发展.本文通过对普那霉素产生菌——始旋链霉菌柯斯基因组 文库的构建和菌落原位杂交,筛选出了与普那霉素高产密切相关的新基因所在的柯斯质粒,并通过 酶切分析和Southern杂交确定了该基因所在的酶切片段,对酶切片段进行亚克隆测序,获得了 与天蓝色链霉菌中抗生素调控基因afsk同源新基因的全长克隆,该新基因包含有1个2 127 bp的开放阅读框(ORF),编码708个氨基酸的蛋白,命名为Spy1.对该新基因的生物信息学初步分析表明,该基因编码的是丝/苏氨酸蛋白激酶.  相似文献   

8.
大阪大学工学院合叶修一教授研究组用基因工程法将构成酶的一部分氨基酸改换为别的氨基酸,可提高酶的热稳定性达5百倍。这个技术除了可在工业上应用外,还可制造出自然界没有的、具有新功能的蛋白质。这给所谓蛋白质工程增添了一种手段而引人注目。  相似文献   

9.
利用基因重组技术 ,在大肠杆菌中克隆并表达苯丙氨酸脱氨酶 (PAL) (EC4 .3 .1 .5) ,并应用此酶转化肉桂酸生成L 苯丙氨酸。方法是将欧芹苯丙氨酸脱氨酶cDNA亚克隆到组成型表达载体pMG3 6e启动子P3 2下游 ,以菌落PCR法鉴定插入片段的大小和方向都正确的克隆 ,进而以HPLC检测肉桂酸浓度的方法鉴别重组质粒有催化肉桂酸生成L 苯丙氨酸的酶活力。结果获得能表达PAL酶活性的阳性克隆 ,在pH1 0 ,含 1 .0 %肉桂酸、8.0mol/L氨的转化液中 ,3 0℃反应 2 0h ,肉桂酸重量转化率可达 60 %。该基因工程菌有希望用于工业化生产L 苯丙氨酸。  相似文献   

10.
Calgene 获得了第一个在基因工程植物中使用反义技术的专利。专利号4,801,540保护延伸开的种植架生产水果的专有西红柿植物。Calgene 以前宣布,该公司已成功地利用反义重组 DNA 技术减少与成熟果实软化有关普通西红柿酶(多聚半乳糖醛酸酶或 PG)的存在。该公司的技术涉及到用“反义 PG”基因的工程植物以便极大地减少该酶的产生。反义西红柿是由该公司与 Campbell Soup 公司合作投资开发的。Campbell Soup 公司拥有世界西红柿权,且是  相似文献   

11.
为了解析分支酸变位酶和预苯酸脱氢酶在大肠杆菌T蛋白的定位,根据T蛋白限制性水解结果,分段克隆分支酸变位酶和预苯酸脱氢酶.T蛋白限制性水解结果显示,第93位氨基酸是大片段的N端,分段克隆的1~93 片段测定得到分支酸变位酶活性,96~373片段得到了预苯酸脱氢酶活性.研究表明,大肠杆菌T蛋白由两个独立结构域组成,N端93个氨基酸组成了分支酸变位酶,C端277个氨基酸组成了预苯酸脱氢酶.  相似文献   

12.
目的:通过改造炭疽毒素保护性抗原Protective Antigen (PA)及致死因子Lethal Factor (LF),尝试建立更加广谱的新型炭疽毒素靶向给药系统并对其递送效率进行定量评价.方法:采用基因工程手段,分别构建了3种改构的天然炭疽毒素保护性抗原PA及炭疽毒素的LF N端融合海肾荧光素酶(Luciferase)的LFn-linker-Luc的大肠杆菌重组表达体系.利用CCK-8法评价改构PA和LF共同作用肿瘤细胞后的细胞存活率;利用改构PA和LFn-linker-Luc与肿瘤细胞共孵育,通过测定细胞内荧光素酶活性,评价改构PA靶向肿瘤细胞的效果.结果:体外酶解实验证明构建的改构PA蛋白能够被正确地酶解成目的大小的片段;改构PA和LF共同作用肿瘤细胞能够显著降低细胞存活率;利用LFn-linker-Luc能够评价改构PA的靶向效率,PA蛋白的改构方式与其递送效率相关.结论:设计并改构的炭疽毒素药物递送系统,能够实现特异性靶向肿瘤细胞的效果,并具有更广谱的作用效果,为研制新型广谱抗肿瘤药物提供了新的思路和方法.  相似文献   

13.
肌球蛋白轻链激酶(myosin light chain kinase,MLCK)具有激酶和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为进一步阐明MLCK非激酶活性在平滑肌收缩过程中的调节作用,利用已删除部分激酶区域的MLCK重组体(pGEXF6.5)在大肠杆菌中进行表达,采用亲和层析技术纯化表达的MLCK片段,应用EnzChek磷分析试剂盒检测MLCK片段对磷酸化肌球蛋白、水解重酶解肌球蛋白(heavymeromyosin,HMM)及肌球蛋白亚片段1(subfragmentl,S1)ATP酶活性的影响,体外检测MLCK片段对肌动蛋白肌丝运动的调节.研究结果显示,pGEX-F6.5重组表达载体在大肠杆菌中以可溶性GST融合蛋白的形式表达.该融合蛋白经Glutathione-Sepharose4B纯化、SDS-PAGE鉴定得到较纯的单一表达条带.纯化的MLCK片段对磷酸化肌球蛋白、HMM和S1的ATP酶活性均有明显激活作用.MLCK片段激活磷酸化肌球蛋白ATP酶活性为:Vmax=(19.426±1.669)倍;Km=(0.486±0.106)μmol/L,MLCK片段对磷酸化HMM和S1的ATP酶活性也有相似的刺激作用.体外肌丝运动研究表明,随着MLCK片段浓度的增加,磷酸化肌球蛋白与肌动蛋白结合的数量不断增加,肌丝运动的速度也随之增加.上述结果表明,MLCK的C端非激酶活性具有调节磷酸化的肌球蛋白ATP酶活性及肌丝运动的作用.  相似文献   

14.
以大肠杆菌表达的萤火虫荧光素酶 (fireflyluciferase)为抗原 ,免疫小鼠并进一步筛选与克隆 ,共得到 6株单克隆抗体 .制备腹水并纯化获得抗体后 ,对这 6株抗体与天然态和热变性态蛋白质以及蛋白酶解片段的结合性质进行了鉴定 .认为这 6株抗体的抗原决定簇都是顺序决定簇 .发现其中有 2株单抗与热变性态蛋白质及酶解片段的结合能力较强 ,而不与天然态蛋白质结合 ,其抗原决定簇可能是位于蛋白质内部的肽段 .另外 4株抗体既可与热变性态蛋白质以及酶解片段结合 ,也可与天然态蛋白质结合 ,其抗原决定簇可能位于蛋白质分子表面 .  相似文献   

15.
在"蛋白质工程"一节教学中,以《普通高中生物学课程标准(2017年版)》为依据,采用"科学-技术-社会"的教学策略,由胰岛素的工业合成引入话题,通过资料分析和小组讨论等方式,引导学生形成"蛋白质工程是基因工程的延伸"的核心概念,提高基于已有知识和新信息解决实际问题的能力,关注基因工程在药物生产中的实际应用,认同基因工程和蛋白质工程等生物技术的应用价值和发展前景。  相似文献   

16.
近年来重组DNA技术不仅在蛋白质结构与功能的研究中已成为有用的新方法,而且已发展为工程性的应用学科—基因工程。因其具有广泛的应用前景,而倍受重视,是生物工程中最引人注目的一个领域。很多蛋白质和肽类物质已经可用基因工程方法进行生产。很多“生物工程公司”也就芸芸而生。重组DNA的表达产物已经或准备作为生物制品或药物走向市场,用于多种疾病的治疗,诸如:人胰岛素、人生长激素、干扰素、组织纤溶酶激活剂(TPA)、红血球生成素(EPO)和乙型肝炎疫苗。  相似文献   

17.
以米根霉菌基因组DNA为模板,根据GenBank上已公布的米根霉L-乳酸脱氢酶基因(ldhL)序列设计特异性引物,PCR扩增得到963 bp的DNA片段,经序列分析后将其亚克隆到原核表达载体pET30a上,构建成重组质粒pET30a-ldhL.将pET30a-ldhL转化到BL21感受态细菌中,经IPTG诱导表达后进行SDS-PAGE分析,可见约43 kD的与预期大小一致的目的蛋白条带,结果表明ldhL基因在大肠杆菌中进行了表达,经酶活分析产物的酶活力为98 U/mL,证明了表达产物具有预期的酶活性,这为进一步研究利用乳清为发酵原料高产L-乳酸的米根霉基因工程菌株奠定了基础.  相似文献   

18.
泛素化是一种非常重要的蛋白质翻译后修饰方式,在细胞生命活动的各个方面发挥作用。泛素化修饰是可逆的过程,去泛素化酶通过催化去除底物蛋白质上的泛素从而逆转该过程。去泛素化酶是一类数量众多的蛋白水解酶家族,近年来不断有新的去泛素化酶被发现和报道。鉴于其在细胞功能中的重要作用,去泛素化酶活性受到严格的调控。目前的研究表明,影响去泛素化酶活性的因素很多。本文主要从转录水平的调控、翻译后修饰、蛋白质定位和蛋白质相互作用等调控方式进行论述,以期为研究和利用去泛素化酶治疗疾病提供新思路。  相似文献   

19.
分子酶工程的研究进展   总被引:1,自引:0,他引:1  
随着基因工程和蛋白质工程的进展和应用,酶工程在分子水平上的研究与应用也得到了迅猛发展。本着重介绍了酶基因克隆与异源表达、酶分子的定向改造和进化、融合蛋白与融合酶、酶的人工模拟(抗体酶、分子印迹技术)和端粒酶,综述了分子酶工程的研究进展、趋势及其应用。  相似文献   

20.
旋毛虫plancitoxin-1-like(Ts-Pt)是旋毛虫125种DNaseⅡ家族蛋白中唯一具有典型DNaseⅡ活性区域HKD基序的核酸酶,且普遍认为,组氨酸位点是DNaseⅡ的活性氨基酸位点。为研究Ts-Pt活性位点突变体蛋白的核酸酶活性,利用重叠PCR方法获得Ts-Pt活性位点突变体片段,以p ET-28a(+)为载体构建重组表达质粒并在大肠杆菌中诱导表达。重组Ts-Pt突变体蛋白经亲和层析纯化后进行SDS-PAGE分析。利用琼脂糖凝胶电泳法和核酸酶酶谱分析重组Ts-Pt突变体蛋白的核酸酶活性。成功构建含Ts-Pt突变体重组质粒的基因工程菌,SDS-PAGE和亲和层析纯化结果显示,重组Ts-Pt突变体蛋白呈包涵体表达。重组蛋白经复性后并没有表现出核酸酶活性,但核酸酶酶谱分析结果显示,包涵体表达的重组Ts-Pt突变体蛋白表现出降解DNA的能力。同时,N端和C端活性位点H及HCK和DHSK突变并不影响Ts-Pt的核酸酶活性,研究结果为进一步研究庞大的DNaseⅡ家族蛋白在旋毛虫发育和感染方面的作用提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号