首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We studied moose (Alces alces) survival, physical condition, and abundance in a 3-predator system in western Interior Alaska, USA, during 2001–2007. Our objective was to quantify the effects of predator treatments on moose population dynamics by investigating changes in survival while evaluating the contribution of potentially confounding covariates. In May 2003 and 2004, we reduced black bear (Ursus americanus) and brown bear (U. arctos) numbers by translocating bears ≥240 km from the study area. Aircraft-assisted take reduced wolf (Canis lupus) numbers markedly in the study area during 2004–2007. We estimated black bears were reduced by approximately 96% by June 2004 and recovered to within 27% of untreated numbers by May 2007. Brown bears were reduced approximately 50% by June 2004. Late-winter wolf numbers were reduced by 75% by 2005 and likely remained at these levels through 2007. In addition to predator treatments, moose hunting closures during 2004–2007 reduced harvests of male moose by 60% in the study area. Predator treatments resulted in increased calf survival rates during summer (primarily from reduced black bear predation) and autumn (primarily from reduced wolf predation). Predator treatments had little influence on survival of moose calves during winter; instead, calf survival was influenced by snow depth and possibly temperature. Increased survival of moose calves during summer and autumn combined with relatively constant winter survival in most years led to a corresponding increase in annual survival of calves following predator treatments. Nonpredation mortalities of calves increased following predator treatments; however, this increase provided little compensation to the decrease in predation mortalities resulting from treatments. Thus, predator-induced calf mortality was primarily additive. Summer survival of moose calves was positively related to calf mass (β > 0.07, SE = 0.073) during treated years and lower (β = −0.82, SE = 0.247) for twins than singletons during all years. Following predator treatments, survival of yearling moose increased 8.7% for females and 21.4% for males during summer and 2.2% for females and 15.6% for males during autumn. Annual survival of adult (≥2 yr old) female moose also increased in treated years and was negatively (β = −0.21, SE = 0.078) related to age. Moose density increased 45%, from 0.38 moose/km2 in 2001 to 0.55 moose/km2 in 2007, which resulted from annual increases in overall survival of moose, not increases in reproductive rates. Indices of nutritional status remained constant throughout our study despite increased moose density. This information can be used by wildlife managers and policymakers to better understand the outcomes of predator treatments in Alaska and similar environments. © 2011 The Wildlife Society.  相似文献   

2.
Abstract: In North America, brown bears (Ursus arctos) can be a significant predator on moose (Alces alces) calves. Our study in Sweden is the first in which brown bears are the only predator on moose calves. Bears and moose occurred at densities of about 30/1,000 km2 and 920/1,000 km2, respectively, and bears killed about 26% of the calves. Ninety-two percent of the predation took place when calves were <1 month old. Bear predation was probably additive to other natural mortality, which was about 10% in areas both with and without bears. Females that lost their calves in spring produced more calves the following year (1.54 calves/F) than females that kept their calves (1.11 calves/F), which reduced the net loss of calves due to predation to about 22%.  相似文献   

3.
ABSTRACT We encourage informed and transparent decision-making processes concerning the recently expanded programs in Alaska, USA, to reduce predation on moose (Alces alces). The decision whether to implement predator control ultimately concerns what society should value; therefore, policymakers, not objective biologists, play a leadership role. From a management and scientific standpoint, biological support for these predator-control programs requires convincing evidence that 1) predators kill substantial numbers of moose that would otherwise mostly live and be available for harvest, 2) low predation can facilitate reliably higher harvests of moose, 3) given less predation, habitats can sustain more moose and be protected from too many moose, and 4) sustainable populations of Alaska's brown bears (Ursus arctos), black bears (Ursus americanus), and wolves (Canis lupus) will exist in and out of control areas. We reviewed 10 moose mortality studies, 36 case histories, 10 manipulative studies, 15 moose nutrition studies, and 3 recent successful uses of nutrition-based management to harvest excess female moose. Results of these studies support application of long-term, substantial predator control for increasing yield of moose in these simple systems where moose are a primary prey of 3 effective predators. We found no substantive, contradictory results in these systems. However, to identify and administer feasible moose population objectives, recently established moose nutritional indices must be monitored, and regulatory bodies must accept nutrition-based management. In addition, the efficacy of techniques to reduce bear predation requires further study. Predicting precise results of predator control on subsequent harvest of moose will continue to be problematic because of a diversity of changing interactions among biological, environmental, and practical factors. In Alaska, the governor has the prerogative to influence regulations on predator control by appointing members to the Board of Game. At least annually, the Board of Game hears a wide spectrum of public opinions opposing and favoring predator control. We summarized these opinions as well as the societal and cultural values and expectations that are often the primary basis for debates. Advocates on both sides of the debate suggest they hold the higher conservation ethic, and both sides provide biased science. We recommend a more constructive and credible dialogue that focuses openly on values rather than on biased science and fabricated conspiracies. To be credible and to add substance in this divisive political arena, biologists must be well informed and provide complete information in an unbiased and respectful manner without exaggeration.  相似文献   

4.
In sub-Arctic and north-temperate ecosystems, opportunistic carnivores, such as black bears (Ursus americanus) and brown bears (Ursus arctos), are active on the landscape for a shorter period annually than sympatric gray wolves (Canis lupus). Therefore, bear movement patterns and habitat use might be expected to be more deliberate and of greater consequence, in terms of energy acquisition, than those of predators not undergoing hibernation. Habitat choices concerning feeding, bedding, and denning grounds made by black bears therefore should reflect seasonal abundance and distribution of vegetation and key prey items as these are sites where bears remain and forage for prolonged periods of time. We recorded the movement patterns of 6 GPS-collared black bears from den emergence to onset of moose (Alces alces) parturition in 2003. Over approximately 3 weeks prior to parturition, results from average distance calculations suggest that black bears moved closer to probable moose calving-site habitat. Additionally, the seasonal habitat use by black bears surrounding dens reflected the same trend for areas where cow moose gave birth in spring 2003, with a propensity to use needleleaf forest more than any other habitat.  相似文献   

5.
Although some populations remain stable, moose (Alces alces) density and distribution have been declining in many areas along the southern edge of their North American distribution. During 2006–2009, we deployed 99 vaginal implant transmitters (VITs) in 86 adult female moose in central Ontario, Canada to assist in locating and radiocollaring neonatal moose calves. We monitored radiocollared calves to estimate calf survival and assess the relative importance of specific causes of death. Calves in the western portion of our study area (WMU49) were exposed to a 6-day general hunting season, whereas calves in the eastern portion of our study area (Algonquin Provincial Park [APP]) were not exposed to hunting. Annual survival for 87 collared calves was greater in the protected area than the harvested area (72.4 ± 6.8% and 55.8 ± 8.3%, respectively) and averaged 63.7 ± 7.1% overall. Predation by wolves (Canis sp.) and American black bears (Ursus americanus) was the dominant cause of death but occurred predominately in APP, whereas other natural mortality agents were 4× more common in WMU49. Only 16% of the collared calves in WMU49 were harvested each year despite a high proportion (approx. 50%) of accessible, public land. Most natural mortality occurred prior to the autumn hunting season such that reductions in natural mortality had little potential to compensate for calf harvest. Overall, calf survival in our study area was moderate to high and our findings suggest predator control or further restrictions of calf hunting in this area is not justified. © The Wildlife Society, 2013  相似文献   

6.
ABSTRACT Reduced to small isolated groups by anthropogenic habitat losses or habitat modifications, populations of many endangered species are sensitive to additive sources of mortality, such as predation. Predator control is often one of the first measures considered when predators threaten survival of a population. Unfortunately, predator ecology is often overlooked because relevant data are difficult to obtain. For example, the endangered Gaspésie caribou (Rangifer tarandus caribou) has benefited from 2 periods of predator control that targeted black bears (Ursus americanus) and coyotes (Canis latrans) in an attempt to reduce predation on caribou calves. Despite a high trapping effort, the number of predators removed has remained stable over time. To assess impact of predator movements on efficacy of a control program, we studied space use of 24 black bears and 16 coyotes over 3 years in and around the Gaspésie Conservation Park, Quebec, Canada, using Global Positioning System radiocollars. Annual home ranges of black bears averaged 260 km2 and 10 individuals frequented area used by caribou. Annual home ranges of resident coyotes averaged 121 km2, whereas dispersing coyotes covered >2,600 km2. Coyotes were generally located at lower altitudes than caribou. However, because coyotes undertook long-distance excursions, they overlapped areas used by caribou. Simulations based on observed patterns showed that 314 bears and 102 coyotes potentially shared part of their home range with areas used by female caribou during the calving period. Despite low densities of both predator species, extensive movement and use of nonexclusive territories seem to allow predators to rapidly occupy removal areas, demonstrating the need for recurrent predator removals. Our results underscore the necessity of considering complementary and alternative solutions to predator control to assure long-term protection of endangered species.  相似文献   

7.
ABSTRACT We evaluated survival of elk (Cervus elaphus) calves on 2 contrasting study areas in north-central Idaho, USA, from 1997 to 2004. Recruitment was modest (>30 calves:100 F [calves of either sex: F elk 1 yr old]) and stable on the South Fork study area and low (<20 calves:100 F) and declining on the Lochsa study area. The primary proximate cause of calf mortality on both study areas was predation by black bears (Ursus americanus) and mountain lions (Puma concolor). We experimentally manipulated populations of black bears and mountain lions on a portion of each study area. Black bear harvest (harvest density/600km2) initially doubled on the Lochsa treatment after manipulating season bag limits. Mountain lion harvest also increased by 60% but varied widely during the manipulation period. Harvest seasons were closed for black bears and mountain lions on the treatment portion of the South Fork study area. Using the Andersen—Gill formulation (A-G) of the Cox proportional hazards model, we examined effects of landscape structure, predator harvest levels, and biological factors on summer calf survival. We used Akaike's Information Criterion (AICc) and multimodel inference to assess some potentially useful predictive factors relative to calf survival. We generated risk ratios for both the best models and for model-averaged coefficients. Our models predicted that calf survival was influenced by biological factors, landscape surrounding calf locations, and predator harvest levels. The model that best explained mortality risk to calves on the Lochsa included black bear harvest (harvest density/600 km2), estimated birth mass of calves, and percentage of shrub cover surrounding calf locations. Incorporating a shrub X time interaction allowed us to correct for nonproportionality and detect that effect of shrub cover was only influential during the first 14 days of a calf's life. Model-averaging indicated that estimated birth mass of calves and black bear harvest were twice as important as the next variables, but age of calves at capture was also influential in calf survival. The model that best explained mortality risk to calves on the South Fork included black bear harvest, age of calves at capture, and gender of calves. Model-averaging indicated that age at capture and black bear harvest were twice as important as the next variable, forest with 33–66% canopy cover (Canopy 33–66). Risk to calves decreased when calves occupied areas with more of this forest cover type. Model-averaging also indicated that increased mountain lion harvest lowered calf mortality risk 4% for every 1-unit increase in lion harvest (harvest density/600 km2) but was lower (<25%) in importance compared to age at capture and black bear harvest. Our results suggest that levels of predator harvest, and presumably predator density, resource limitations expressed through calf birth mass, and habitat structure had substantial effects on calf survival. Our results can be generalized to other areas where managers are dealing with low calf elk recruitment. However, because factors vary spatially, a single management strategy applied in different areas will probably not have the same effect on calf survival.  相似文献   

8.
Taenia tapeworms of Finnish and Swedish wolves (Canis lupus) and Finnish brown bears (Ursus arctos), and muscle cysticerci of Svalbard reindeer (Rangifer tarandus platyrhynchus), Alaskan Grant's caribou (Rangifer tarandus granti) and Alaskan moose (Alces americanus) were identified on the basis of the nucleotide sequence of a 396 bp region of the mitochondrial cytochrome c oxidase subunit 1 gene. Two species were found from wolves: Taenia hydatigena and Taenia krabbei. The cysticerci of reindeer, caribou and one moose also represented T. krabbei. Most of the cysticercal specimens from Alaskan moose, however, belonged to an unknown T. krabbei-like species, which had been reported previously from Eurasian elks (Alces alces) from Finland. Strobilate stages from two bears belonged to this species as well. The present results suggest that this novel Taenia sp. has a Holarctic distribution and uses Alces spp. as intermediate and ursids as final hosts.  相似文献   

9.
Predation can have strong direct and indirect effects on the behavior of prey. We investigated whether predation by chain pickerel (Esox niger) caused adult eastern mosquitofish (Gambusia holbrooki) to alter their habitat use and whether pickerel predation influenced survival of adult and neonate mosquitofish. The number of adult mosquitofish using the riskier of three habitats was lowest when two predators occupied the risky habitat, intermediate in the treatment with one predator, and highest when no predators occurred there. More mosquitofish neonates survived high predation treatments than treatments lacking pickerel. We conclude that pickerel predation causes adult mosquitofish to shift to refuge habitats. The pattern of neonate survival suggests that adult habitat use may create a refuge from cannibalism for neonate mosquitofish, resulting in higher neonate survival in treatments with more pickerel. Hence, pickerel predation has a direct effect on adult mosquitofish behavior and a strong indirect effect on neonate survival. Both interspecific and intraspecific predation can effect prey populations and can interact to produce important indirect effects.  相似文献   

10.
The recent development in Global Positioning System (GPS) techniques has started a new era in predation studies. Estimates of kill rates based on animal movements and GPS relocation clusters have proven to be valid in several obligatory carnivores. The main focus has been to obtain accurate mean predation estimates for the management of wildlife populations. We present a model to estimate individual kill rates of moose calves by adult female brown bears in Sweden, based on spatiotemporal clustering of 30,889 bear GPS relocations and 71 moose calves verified killed during 714 field investigations in 2004–2006. In this virtually single-predator single large prey system, the omnivorous brown bear is an efficient predator on moose calves up to 4 weeks of age. The top model set only included models with cluster radii of 30 m or 50 m, indicating very high kill-site fidelity. The best model included a cluster radius of 30 m and number of periods of bear activity at the kill site as a single covariate. The mean estimated individual kill rate of 7.6 ± 0.71 (n = 18, ± SE) moose calves per calving season is comparable to the estimate of 6.8 from a previous study of radio-tracked moose in our study area, though at a lower moose/bear ratio. The mean annual kill rates varied from 6.1 to 9.4 calves per bear. The estimated individual kill rates ranged from 2 to 15 calves per season, indicating a large individual variation in hunting skills and possibly effort. Predation and livestock depredation represent a core conflict between humans and carnivores in rural Scandinavia. Accurate predation estimates represent an important step in quantifying costs of carnivores and reducing human–carnivore conflicts. Our technique may be applied in the exploration of predation mechanisms and predator–prey interactions, and contribute to the old and global debate of problem individuals in livestock depredation. © 2012 The Wildlife Society.  相似文献   

11.
In 2001 and 2002, 52 elk (Cervus canadensis; 21 males, 31 females), originally obtained from Elk Island National Park, Alberta, Canada, were transported and released into Cataloochee Valley in the northeastern portion of Great Smoky Mountains National Park (GRSM, Park), North Carolina, USA. The annual population growth rate (λ) was negative (0.996, 95% CI = 0.945–1.047) and predation by black bears (Ursus americanus) on elk calves was identified as an important determinant of population growth. From 2006 to 2008, 49 bears from the primary elk calving area (i.e., Cataloochee Valley) were trapped and translocated about 70 km to the southwestern portion of the Park just prior to elk calving. Per capita recruitment (i.e., the number of calves produced per adult female that survive to 1 year of age) increased from 0.306 prior to bear translocation (2001–2005) to 0.544 during years when bears were translocated (2006–2008) and λ increased to 1.118 (95% CI = 1.096–1.140). Our objective was to determine whether per capita calf recruitment rates after bear removal (2009–2019) at Cataloochee were similar to the higher rates estimated during bear removal (i.e., long-term response) or if they returned to rates before bear removal (i.e., short-term response), and how those rates compared with recruitment from portions of our study area where bears were not relocated. We documented 419 potential elk calving events and monitored 129 yearling and adult elk from 2001 to 2019. Known-fate models based on radio-telemetry and observational data supported calf recruitment returning to pre-2006 levels at Cataloochee (short-term response); recruitment of Cataloochee elk before and after bear relocation was lower (0.184) than during bear relocation (0.492). Recruitment rates of elk outside the removal area during the bear relocation period (0.478) were similar to before and after rates (0.420). In the Cataloochee Valley, cause-specific annual calf mortality rates due to predation by bears were 0.319 before, 0.120 during, and 0.306 after bear relocation. In contrast, the cause-specific annual mortality rate of calves in areas where bears were not relocated was 0.033 after the bear relocation period, with no bear predation on calves before or during bear relocation. The mean annual population growth rate for all monitored elk was 1.062 (95% CI = 0.979–1.140) after bear relocation based on the recruitment and survival data. Even though the effects of bear removal were temporary, the relocations were effective in achieving a short-term increase in elk recruitment, which was important for the reintroduction program given that the elk population was small and vulnerable to extirpation.  相似文献   

12.
Abstract: We present a comprehensive look at a sample of bear spray incidents that occurred in Alaska, USA, from 1985 to 2006. We analyzed 83 bear spray incidents involving brown bears (Ursus arctos; 61 cases, 74%), black bears (Ursus americanus; 20 cases, 24%), and polar bears (Ursus maritimus; 2 cases, 2%). Of the 72 cases where persons sprayed bears to defend themselves, 50 (69%) involved brown bears, 20 (28%) black bears, and 2 (3%) polar bears. Red pepper spray stopped bears' undesirable behavior 92% of the time when used on brown bears, 90% for black bears, and 100% for polar bears. Of all persons carrying sprays, 98% were uninjured by bears in close-range encounters. All bear—inflicted injuries (n = 3) associated with defensive spraying involved brown bears and were relatively minor (i.e., no hospitalization required). In 7% (5 of 71) of bear spray incidents, wind was reported to have interfered with spray accuracy, although it reached the bear in all cases. In 14% (10 of 71) of bear spray incidents, users reported the spray having had negative side effects upon themselves, ranging from minor irritation (11%, 8 of 71) to near incapacitation (3%, 2 of 71). Bear spray represents an effective alternative to lethal force and should be considered as an option for personal safety for those recreating and working in bear country. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):640–645; 2008)  相似文献   

13.
In a predator–prey system, prey species may adapt to the presence of predators with behavioral changes such as increased vigilance, shifting habitats, or changes in their mobility. In North America, moose (Alces alces) have shown behavioral adaptations to presence of predators, but such antipredator behavioral responses have not yet been found in Scandinavian moose in response to the recolonization of wolves (Canis lupus). We studied travel speed and direction of movement of GPS‐collared female moose (n = 26) in relation to spatiotemporal differences in wolf predation risk, reproductive status, and time of year. Travel speed was highest during the calving (May–July) and postcalving (August–October) seasons and was lower for females with calves than females without calves. Similarly, time of year and reproductive status affected the direction of movement, as more concentrated movement was observed for females with calves at heel, during the calving season. We did not find support for that wolf predation risk was an important factor affecting moose travel speed or direction of movement. Likely causal factors for the weak effect of wolf predation risk on mobility of moose include high moose‐to‐wolf ratio and intensive hunter harvest of the moose population during the past century.  相似文献   

14.
1.?Understanding the interaction among predators and between predation and climate is critical to understanding the mechanisms for compensatory mortality. We used data from 1999 radio-marked neonatal elk (Cervus elaphus) calves from 12 populations in the north-western United States to test for effects of predation on neonatal survival, and whether predation interacted with climate to render mortality compensatory. 2.?Weibull survival models with a random effect for each population were fit as a function of the number of predator species in a community (3-5), seven indices of climatic variability, sex, birth date, birth weight, and all interactions between climate and predators. Cumulative incidence functions (CIF) were used to test whether the effects of individual species of predators were additive or compensatory. 3.?Neonatal elk survival to 3 months declined following hotter previous summers and increased with higher May precipitation, especially in areas with wolves and/or grizzly bears. Mortality hazards were significantly lower in systems with only coyotes (Canis latrans), cougars (Puma concolor) and black bears (Ursus americanus) compared to higher mortality hazards experienced with gray wolves (Canis lupus) and grizzly bears (Ursus horribilis). 4.?In systems with wolves and grizzly bears, mortality by cougars decreased, and predation by bears was the dominant cause of neonatal mortality. Only bear predation appeared additive and occurred earlier than other predators, which may render later mortality by other predators compensatory as calves age. Wolf predation was low and most likely a compensatory source of mortality for neonatal elk calves. 5.?Functional redundancy and interspecific competition among predators may combine with the effects of climate on vulnerability to predation to drive compensatory mortality of neonatal elk calves. The exception was the evidence for additive bear predation. These results suggest that effects of predation by recovering wolves on neonatal elk survival, a contentious issue for management of elk populations, may be less important than the composition of the predator community. Future studies would benefit by synthesizing overwinter calf and adult-survival data sets, ideally from experimental studies, to test the roles of predation in annual compensatory and additive mortality of elk.  相似文献   

15.
Distribution theory predicts that for two species living in sympatry, the subordinate species would be constrained from using the most suitable resources (e.g., habitat), resulting in its use of less suitable habitat and spatial segregation between species. We used negative binomial generalized linear mixed models with fixed effects to estimate seasonal population-level resource selection at two spatial resolutions for female brown bears (Ursus arctos) and female American black bears (U. americanus) in southcentral Alaska during May–September 2000. Black bears selected areas occupied by brown bears during spring which may be related to spatially restricted (i.e., restricted to low elevations) but dispersed or patchy availability of food. In contrast, black bears avoided areas occupied by brown bears during summer. Brown bears selected areas near salmon streams during summer, presumably to access spawning salmon. Use of areas with high berry production by black bears during summer appeared in response to avoidance of areas containing brown bears. Berries likely provided black bears a less nutritious, but adequate food source. We suggest that during summer, black bears were displaced by brown bears, which supports distribution theory in that black bears appeared to be partially constrained from areas containing salmon, resulting in their use of areas containing less nutritious forage. Spatial segregation of brown and American black bears apparently occurs when high-quality resources are spatially restricted and alternate resources are available to the subordinate species. This and previous work suggest that individual interactions between species can result in seasonal population-level responses.  相似文献   

16.
Selecting the right habitat in a risky landscape is crucial for an individual''s survival and reproduction. In predator–prey systems, prey often can anticipate the habitat use of their main predator and may use protective associates (i.e. typically an apex predator) as shields against predation. Although never tested, such mechanisms should also evolve in systems in which sexual conflict affects offspring survival. Here, we assessed the relationship between offspring survival and habitat selection, as well as the use of protective associates, in a system in which sexually selected infanticide (SSI), rather than interspecific predation, affects offspring survival. We used the Scandinavian brown bear (Ursus arctos) population with SSI in a human-dominated landscape as our model system. Bears, especially adult males, generally avoid humans in our study system. We used resource selection functions to contrast habitat selection of GPS-collared mothers that were successful (i.e. surviving litters, n = 19) and unsuccessful (i.e. complete litter loss, n = 11) in keeping their young during the mating season (2005–2012). Habitat selection was indeed a predictor of litter survival. Successful mothers were more likely to use humans as protective associates, whereas unsuccessful mothers avoided humans. Our results suggest that principles of predator–prey and fear ecology theory (e.g. non-consumptive and cascading effects) can also be applied to the context of sexual conflict.  相似文献   

17.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

18.
The impact of anthropogenic disturbance on the fitness of prey should depend on the relative effect of human activities on different trophic levels. This verification remains rare, however, especially for large animals. We investigated the functional link between habitat selection of female caribou (Rangifer tarandus) and the survival of their calves, a fitness correlate. This top-down controlled population of the threatened forest-dwelling caribou inhabits a managed forest occupied by wolves (Canis lupus) and black bears (Ursus americanus). Sixty-one per cent of calves died from bear predation within two months following their birth. Variation in habitat selection tactics among mothers resulted in different mortality risks for their calves. When calves occupied areas with few deciduous trees, they were more likely to die from predation if the local road density was high. Although caribou are typically associated with pristine forests, females selected recent cutovers without negative impact on calf survival. This selection became detrimental, however, as regeneration took place in harvested stands owing to increased bear predation. We demonstrate that human disturbance has asymmetrical consequences on the trophic levels of a food web involving multiple large mammals, which resulted in habitat selection tactics with a greater short-term fitness payoff and, therefore, with higher evolutionary opportunity.  相似文献   

19.
Despite potentially reducing predation mortality, behavioural responses of native species to introduced predators may still have sub-lethal impacts. In video-recorded laboratory trials, we examined the effects of introduced brown trout, Salmo trutta, on the short-term behaviour of a threatened, lake-dwelling galaxiid fish and confirmed a suspected diel pattern in habitat use by this species. We found that Galaxias auratus followed a distinct diel pattern in the use of complex habitats and open water, which was significantly altered by the presence of brown trout. In trials without the introduced predator, G. auratus used complex habitats (rocks or macrophytes) during the day, and open water during the night. In trials with brown trout present, G. auratus spent significantly less time in open water and rarely ventured out of the macrophytes. However, when given the option of using only rocky substrate or open water, which is the more common situation in the lakes to which this galaxiid is endemic, the fish reduced the amount of time they spent in the open water during the night, but still spent more time in open water than when macrophytes were available. Spending the daylight hours amongst the cover of rocks or macrophytes is most likely an adaptation to reduce the risk of predation by visual predators, and the pattern of reduced use of open water habitats in the presence of brown trout is an acute response to the close proximity of the introduced predator. The difference in the nocturnal use of macrophytes and rocks when trout are present may be related to differences in feeding opportunities or success within these habitats.  相似文献   

20.
So far the vast majority of studies on large carnivore predation, including kill rates and consumption, have been based on winter studies. Because large carnivores relying on ungulates as prey often show a preference for juveniles, kill rates may be both higher and more variable during the summer season than during the rest of the year leading to serious underestimates of the total annual predation rate. This study is the first to present detailed empirical data on kill rates and prey selection in a wolf–moose system during summer (June–September) as obtained by applying modern Global Positioning System-collar techniques on individual wolves (Canis lupus) in Scandinavia. Moose (Alces alces) was the dominant prey species both by number (74.4%) and biomass (95.6%); 89.9% of all moose killed were juveniles, representing 76.0% of the biomass consumed by wolves. Kill rate in terms of the kilogram biomass/kilogram wolf per day averaged 0.20 (range: 0.07–0.32) among wolf territories and was above, or well above, the daily minimum food requirements in most territories. The average number of days between moose kills across wolf territories and study periods was 1.71 days, but increased with time and size of growing moose calves during summer. Over the entire summer (June–September, 122 days), a group (from two to nine) of wolves killed a total of 66 (confidence interval 95%; 56–81) moose. Incorporation of body growth functions of moose calves and yearlings and wolf pups over the summer period showed that wolves adjusted their kill rate on moose, so the amount of biomass/kilogram wolf was relatively constant or increased. The kill rate was much higher (94–116%) than estimated from the winter period. As a consequence, projecting winter kill rates to obtain annual estimates of predation in similar predator–prey systems may result in a significant underestimation of the total number of prey killed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号