首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several seven-carbon fatty acyl lecithins with varied acyl chain branching have been synthesized and characterized as potential phospholipase A2 substrates. Micellar bis(4,4-dimethylpentanoyl) phosphatidylcholine, bis(5-methylhexanoyl)phosphatidylcholine, bis(3-methylhexanoyl)phosphatidylcholine, and bis(2-methylhexanoyl)phosphatidylcholine are poor substrates for phospholipase A2 (Naja naja naja). These branched lecithins also inhibit the hydrolysis of diheptanoylphosphatidylcholine by the enzyme with Ki values comparable to or smaller than the apparent Km of the linear compound. The terminally branched lecithins are excellent substrates for another surface-active hydrolytic enzyme, phospholipase C from Bacillus cereus. When only one acyl chain bears a methyl group, the hybrid lecithins 1-heptanoyl-2-(2-methylhexanoyl)phosphatidylcholine and 1-(3-methylhexanoyl)-2-heptanoylphosphatidylcholine are substrates comparable to diheptanoylphosphatidylcholine. Analysis of micellar structure and dynamics by 1H and 13C NMR spectroscopy, quasi-elastic light scattering, and comparison of critical micellar concentrations indicates little significant difference in the conformation and dynamics of these seven-carbon fatty acyl lecithin micelles, even when the methyl groups are adjacent to the carbonyls. Phospholipase A2 UV difference spectra induced by phospholipid binding imply different enzyme conformations or aggregation states caused by linear-chain and asymmetric-chain lipids compared to bis(methylhexanoyl)phosphatidylcholines. The differences in hydrolytic activity of phospholipase A2 against the branched-chain micellar lecithins can then be attributed to an enzyme-lipid interaction at the active site. The species with both fatty acyl chains branched bind to phospholipase A2 but are not turned over rapidly. Since poor enzymatic activity only occurs for lecithins with both chains methylated, the interaction of both chains with the enzyme must be important for catalytic efficiency.  相似文献   

2.
The substrate specificity of Escherichia coli outer membrane phospholipase A was analyzed in mixed micelles of lipid with deoxycholate or Triton X-100. Diglycerides, monoglycerides, and Tweens 40 and 85 in Triton X-100 are hydrolyzed at rates comparable to those of phospholipids and lysophospholipids. p-Nitrophenyl esters of fatty acids with different chain lengths and triglycerides are not hydrolyzed. The minimal substrate characteristics consist of a long acyl chain esterified to a more or less hydrophilic headgroup as is the case for the substrate monopalmitoylglycol. Binding occurs via the hydrocarbon chain of the substrate; diacyl compounds are bound three to five times better than monoacyl compounds. When acting on lecithins, phospholipase A1 activity is six times higher than phospholipase A2 activity or 1-acyl lysophospholipase activity. Activity on the 2-acyl lyso compound is about two times less than that on the 1-acyl lysophospholipid. The enzyme therefore has a clear preference for the primary ester bond of phospholipids. In contrast to phospholipase A1 activity, phospholipase A2 activity is stereospecific. Only the L isomer of a lecithin analogue in which the primary acyl chain was replaced by an alkyl ether group is hydrolyzed. The D isomer of this analogue is a competitive inhibitor, bound with the same affinity as the L isomer. On these ether analogues the enzyme shows the same preference for the primary acyl chain as with the natural diester phospholipids. Despite its broad specificity, the enzyme will initially act as a phospholipase A1 in the E. coli envelope where it is embedded in phospholipids.  相似文献   

3.
Several short-chain asymmetric lecithins with a total of 14 carbons in the acyl chains (ranging from 1-lauroyl-2-acetylphosphatidylcholine to 1-hexanoyl-2-octanoylphosphatidylcholine) have been synthesized and characterized. The specific activities of phospholipase A2 from cobra venom, phospholipase A2 from porcine pancreas, and phospholipase C from Bacillus cereus toward these lecithins as micelles have been determined. The results of these kinetic studies allow the definition of hydrophobic binding requirements in the active sites of these water-soluble phospholipases. For phospholipase C, with the exception of monomyristoylphosphatidylcholine, each of the asymmetric short-chain lecithins exhibits high activity, comparable to the 14-carbon symmetric short-chain species, diheptanoylphosphatidylcholine. Therefore, for phospholipase C, in addition to the acyl linkages, only a certain degree of hydrophobicity in the fatty acyl chains is requisite for substrate binding and appreciable hydrolysis; there is no chain specificity. The activity of phospholipase A2 from cobra venom toward the same asymmetric lecithins is quite different. As the sn-2 chain lengthens, activity is increased to a maximum for diheptanoyl-PC. Further increase in the number of carbons in the sn-2 chain has no effect on hydrolysis rates. For this enzyme, seven carbons in the sn-2 chain are necessary for optimal activity. In contrast, porcine pancreatic phospholipase A2 activity shows very little dependence on sn-2 chain length.  相似文献   

4.
In this study the relative affinities of natural lecithins and slightly modified lecithin analogues to the active site of porcine pancreatic phospholipase A2 were determined. It was found that the replacement of the phospholipase-fissile fatty acid ester bond in lecithins by an acylamino function results in the formation of potent competitive inhibitors. Substitution of the non-phospholipase-susceptible ester bond by the acylamino linkage does not result in increased affinity of the lecithin analogue to the enzyme. Most probably only the former lecithin analogues partially mimic the structure of the transition state and bind more tightly to the enzyme than the equivalent substrate molecule.  相似文献   

5.
FATTY ACIDS OF LECITHIN IN SUBCELLULAR FRACTIONS DURING MATURATION OF BRAIN   总被引:3,自引:3,他引:0  
Abstract— A study has been made of the fatty acyl profiles of lecithin in subcellular fractions of the brain in rat, guinea pig and rabbit. It was found that cerebral lecithins consisted of at least two groups with dissimilar fatty acyl profiles. The group obtained from myelin showed little variation with age of the rats or among two other species examined. The changes in lecithin fatty acyl composition of brain homogenates were in agreement with a progressively greater contribution of myelin lecithins to brain homogenate lecithins with increasing age.  相似文献   

6.
The activity of two purified lysolecithin-hydrolyzing enzymes on homologous series of synthetic lecithins containing two identical fatty acyl chains and of 1-acyl-lysolecithins has been measured as a function of substrate concentration. In general, enzymatic activity toward lecithins decreased with increasing chain length. Maximal hydrolysis rates for the lysolecithin series were measured with 1-dodecanoyllysolecithin. In this series increased affinities for substrates with increasing acyl-chain length was noticed. In the substrate concentration versus enzymatic velocity curves no breaks were observed at the critical micelle concentration of the various substrates. The initial site of attack during hydrolysis of short-chain lecithins was determined using 1-octanoyl-2pentanoyl-lecithin, 1-hexanoyl-2-hexyllecithin and 1 -hexyl-2-hexanoyllecithin. Both enzymes exhibited a pronounced preference for hydrolysis of the acyl ester bond at the 1-position. Especially the enzyme from beef pancreas seems to be suitable for the enzymatic preparation of 2-acyl lysolecithins from the corresponding short-chain lecithins.  相似文献   

7.
Phospholipase A2 at the bilayer interface.   总被引:2,自引:0,他引:2  
F Ramirez  M K Jain 《Proteins》1991,9(4):229-239
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.  相似文献   

8.
Action of pig pancreatic phospholipase A2 on vesicles and micelles of homologous anionic phospholipids is examined in the absence of additives. As shown elsewhere (Jain et al. (1986) Biochim. Biophys. Acta 860, 435-447), hydrolysis of anionic vesicles occurs by interfacial catalysis in the scooting mode, i.e., the catalytic turnover is fast relative to the off-rate of the enzyme from the interface. When the rate of intervesicle exchange of the enzyme is negligibly slow, it hydrolyses only the substrate molecules in the outer monolayer of the vesicle to which it is bound. Interfacial catalysis in the scooting mode with a high processivity occurs on vesicles of anionic phospholipids, and under these conditions the dynamics and order of the substrate in the interface influences the catalytic turnover only moderately, i.e., about 2- to 10-fold. Similarly, anomalous kinetic effects of the thermotropic gel-fluid phase transition or of a change in the general disorder of the bilayer organization (fluidity) has a minor effect on the kinetics of hydrolysis in the scooting mode. Similarly, higher unsaturation and shorter acyl chains in the substrate modestly increase the rate of catalytic turnover by the low-calcium form of the enzyme without noticeably influencing the affinity of the enzyme for the interface. On the other hand, perturbation of the charge distribution in the substrate interface can shift the proportion of the bound enzyme by several orders of magnitude. For example, the membrane perturbing amphiphiles (e.g., mepacrine, indomethacin, compound 48/80, aristolochic acid, local anesthetics, and the products of hydrolysis) do not influence the catalytic turnover of the bound enzyme but the proportion of the bound enzyme. Short-chain anionic phospholipids are readily hydrolyzed by phospholipase A2. Now no anomalous increase in the rate of hydrolysis is observed at the critical micelle as is the case with the zwitterionic analogs. This is because with anionic (but not with zwitterionic) substrates the enzyme forms an aggregated complex below the cmc of the monomer. The stability of these micellar complexes does not appear to change noticeably with the acyl chain length of the monomers. These observations show that the factors regulating the quality of interface substantially influence the binding of the enzyme, but not the catalytic turnover in the interface.  相似文献   

9.
Previously it has been shown that the binding of porcine pancreatic phospholipase A2 to lipid-water interfaces is governed by the pK of the alpha-NH3+ group of the N-terminal alanine. Chemically modified phospholipases A2 in which the N-terminal Ala has been replaced by D-Ala or in which the polypeptide chain has been elongated with DL-Ala no longer display activity toward micellar substrate. The activity of DL-Ala-1-, [D-Ala1]-, and [Gly1]phospholipases A2 on substrate monolayers, which allow a continuous change in the packing density of the lipid molecule, was investigated. At pH 6 [Gly1]phospholipase A2 behaves like the native enzyme on lecithin monolayers. DL-Ala1- and [D-Ala1]phospholipases A2, although they are active in this system, showed a weaker lipid penetration capacity at this pH. Studies on the pH and Ca2+ ion dependency of the pre-steady-state kinetics and of the activity of these radiolabeled proteins showed that [D-Ala1]phospholipase A2 does not possess a second low-affinity site for Ca2+ ions in contrast to the native phospholipase A2. This second low-affinity Ca2+ binding site, which is also absent in [Gly1]phospholipase A2, is induced in the latter enzyme by the presence of lipid-water interfaces.  相似文献   

10.
A series of inhibitors of glucosylceramide synthesis, the PDMP based family of compounds, has been developed as a tool for the study of sphingolipid biochemistry and biology. During the course of developing more active glucosylceramide synthase inhibitors, we identified a second site of inhibitory activity for PDMP and its structural homologues that accounted for the ability of the inhibitors to raise cell and tissue ceramide levels. This inhibitory activity was directed against a previously unknown pathway for ceramide metabolism, viz. the formation of 1- O -acylceramide. In this pathway the addition of a fatty acyl group to the primary hydroxyl of ceramide occurs through a transacylation with either phosphatidylethanolamine or phosphatidylcholine as a substrate. However, both in the absence and presence of ceramide, water serves as an acceptor for the fatty acid. Thus the enzyme may be considered to be a phospholipase A2. The enzyme is unique in that it has an acidic pH optimum and is localized to lysosomes by cell fractionation. More recently, the 1- O -acylceramide synthase has been purified, sequenced, and cloned. This phospholipase A2 was discovered to be structurally homologous to lecithin cholesterol acyltransferase (LCAT). However, this phospholipase A2 does not recognize cholesterol and lacks the defined lipoprotein-binding domain present in LCAT. We now refer to this enzyme as lysosomal phospholipase A2 (LPLA2). Although acidic phospholipase A2 activities have been previously identified, LPLA2 appears to be the first lysosomal PLA2 to have been sequenced. This new phospholipase A2 lacks an obvious and proven biological function.  相似文献   

11.
Tubercle bacilli were preincubated with lecithin-cholesterol liposomes to be subsequently exposed to phospholipase A2. After further incubation in the environment of acidic buffer, viable units in the final mixture were enumerated by inoculating the serial dilutions of an aliquot onto Kirchner agar medium containing horse serum in 5%. Another aliquot was used for lipid analyses to confirm hydrolysis of lecithin. In addition to this bactericidal type of experiments, bacteriostatic tests were also conducted with Kirchner semi-solid agar medium, into which liposome-treated bacilli were inoculated with the enzyme at a time. Various natural and synthetic lecithins different in constituent fatty acids were employed. The results indicated that toxic fatty acids released from lecithin acted to kill the bacilli or to inhibit their growth.  相似文献   

12.
The thermoalkalophilic lipase from Bacillus thermocatenulatus BTL2 exhibits a low phospholipase activity (lecithin/tributyrin ratio 0.03). A single round of random mutagenesis of the BTL2 gene followed by screening of 6000 transformants on egg-yolk plates identified three variants with 10-12-fold increased phospholipase activities, corresponding to lecithin/tributyrin ratios of 0.16-0.36. All variants were specific for the sn-1 acyl ester bond of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Mutations occurred predominantly in the N-terminal part of BTL2 with regions surrounding the predicted helix alpha(4) and lid as hotspots. Two mutations, L184P located in the predicted helix alpha(4) and H15P found in the highly conserved oxy-anion hole motif among hydrolases, were identified to account for increased phospholipase activity. Two of the three variants showed reduced activities towards medium- and long-chain fatty acyl methyl esters compared to the wild-type enzyme. Substitution of Leu353 with Ser, which is located adjacent to the active site histidine and is important for phospholipase activity in the Staphylococcus hyicus lipase, increased the absolute phospholipase activities of the variants, but not of BTL2, approximately 2-fold. The engineered best variant displayed a lecithin/tributyrin ratio of 0.52, corresponding to a 17-fold increase compared to the wild-type enzyme. Moreover, this variant exhibited a 1.5-4-fold higher activity towards long-chain fatty acyl methyl ester (C18:1, C18:2, C18 and C20) compared to BTL2. A second round of mutagenesis and screening on lecithin-plates yielded no new variants with further increased phospholipase/lipase activity ratios, but instead one variant with a 5-fold increased expression rate and two variants with a 3-fold reduced activity towards triolein were obtained.  相似文献   

13.
Mixed acyl chain phosphatidylcholine molecules in Triton N-101 micelles were employed as substrates for lipoprotein lipase to test which substrate acyl chain has the greatest effect on activation of the enzyme by apolipoprotein C-II. The phospholipase A1 activity of lipoprotein lipase was measured by pH-stat. The activation factor (lipoprotein lipase activity plus apolipoprotein C-II/activity minus apolipoprotein C-II) increased monotonically with apolipoprotein C-II concentration up to 1 microM apolipoprotein C-II at an enzyme concentration of 0.01 microM. The maximal activation factor for phosphatidylcholine substrate molecules with sn-2 acyl chain lengths of 14 averages 14.8. By contrast, for sn-2 acyl chain lengths of 16 the activation factor was 29.2. Varying the sn-1 acyl chain length had no significant effect on the activation factor. The chain-length dependence of the activation factor is similar with the apolipoprotein C-II peptide fragment comprising residues 56-79, which does not include the lipid-binding region of apolipoprotein C-II. These data are consistent with a model for activation of lipoprotein lipase in which residues 56-79 bind to lipoprotein lipase and alter the interaction of the sn-2 acyl chain of the phosphatidylcholine (PC) substrate or the lysoPC product within the activated state complex.  相似文献   

14.
A basic monomeric phospholipase A2 from the venom of the American water moccasin, Agkistrodon piscivorus piscivorus, undergoes Ca2+-dependent, autocatalytic acylation during the course of hydrolysis of both model and natural phospholipid substrates. Acylation occurs at 2 lysine residues, Lys-7 and Lys-10, in the NH2-terminal alpha-helical segment of the enzyme, and when both positions are fully derivatized, the stable bisacylphospholipase A2 becomes a dimer in solution. The acylated enzyme is fully activated toward monomolecular layers of lecithins. Similar studies applied to the monomeric phospholipases A2 from porcine pancreas and from the venom of Agkistrodon contortrix contortrix also showed irreversible activation of the enzymes by substrate with the same kinetic consequences and formation of dimers. Acylation thus enables these enzymes to overcome the lag period observed under such conditions with native monomeric phospholipases, a phenomenon referred to as interfacial activation. Activation of the enzyme by acylation potentiates the phospholipase for interfacial recognition via formation of a dimeric enzyme. The naturally occurring phospholipase A2 dimer from Crotalus atrox venom displays no lag in the hydrolysis of lecithin monolayers nor does it undergo substrate level acylation. These facts support our proposal that dimerization concomitant with acylation is responsible for the large rate enhancements seen in the hydrolysis of aggregated phospholipids by monomeric phospholipases. Our findings demonstrate for the first time a chemical mechanism for interfacial activation of and interfacial recognition by phospholipases A2.  相似文献   

15.
We determined the distribution of lecithin molecular species between vesicles and mixed micelles in cholesterol super-saturated model biles (molar taurocholate-lecithin-cholesterol ratio 67:23:10, 3 g/dl, 0.15 M NaCl, pH approximately 6-7) that contained equimolar synthetic lecithin mixtures or egg yolk or soybean lecithins. After apparent equilibration (48 h), biles were fractionated by Superose 6 gel filtration chromatography at 20 degrees C, and lecithin molecular species in the vesicle and mixed micellar fractions were quantified as benzoyl diacylglycerides by high performance liquid chromatography. With binary lecithin mixtures, vesicles were enriched with lecithins containing the most saturated sn-1 or sn-2 chains by as much as 2.4-fold whereas mixed micelles were enriched in the more unsaturated lecithins. Vesicles isolated from model biles composed of egg yolk (primarily sn-1 16:0 and 18:0 acyl chains) or soy bean (mixed saturated and unsaturated sn-1 acyl chains) lecithins were selectively enriched (6.5-76%) in lecithins with saturated sn-1 acyl chains whereas mixed micelles were enriched with lecithins composed of either sn-1 18:1, 18:2, and 18:3 unsaturated or sn-2 20:4, 22:4, and 22:6 polyunsaturated chains. Gel filtration, lipid analysis, and quasielastic light scattering revealed that apparent micellar cholesterol solubilities and metastable vesicle cholesterol/lecithin molar ratios were as much as 60% and 100% higher, respectively, in biles composed of unsaturated lecithins. Acyl chain packing constraints imposed by distinctly different particle geometries most likely explain the asymmetric distribution of lecithin molecular species between vesicles and mixed micelles in model bile as well as the variations in apparent micellar cholesterol solubilities and vesicle cholesterol/lecithin molar ratios.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction of a soluble homogeneous preparation of D-beta-hydroxybutyrate apodehydrogenase with phospholipid was studied in terms of restoration of enzymic activity and complex formation. The purified apoenzyme, which is devoid of lipid, is inactive. It is reactivated specifically by the addition of lecithin or mixtures of phospholipids containing lecithin. Mitochondrial phospholipid, i.e. the mixture of phospholipids in mitochondria, reactivates with the highest specific activity (approximately 100 micromol of DPN reduced/min/mg at 37 degrees and with the greatest efficiency (2.5 to 4 mol of lecithin/mol of enzyme subunit). Each of the lecithins of varying chain length and unsaturation reactivated the enzyme, albeit to differing extents and efficiencies. In general, lecithins containing unsaturated fatty acid moieties reactivated better than those containing the comparable saturated lipid. Optimal reactivation can be obtained for the various lecithins when they are microdispersed together with phosphatidylethanolamine. When the lecithins are added microdispersed together with both phosphatidylethanolamine and cardiolipin, maximal efficiency is obtained. Also, PC6:0 and 8:0 reactivate as soluble molecules, so that a phospholipid bilayer is not necessary to reactivate the enzyme. Complex formation was studied using gel exclusion chromatography. It can be shown that each of the phospholipids which reactivate combines with the apoenzyme. Mitochondrial phospholipid, which reactivates the best, binds most effectively; PC8:0, which reactivates with poor efficiency, can be shown to bind with low affinity, and negligible binding occurs at concentrations which do not reactivate the enzyme. Since the apoenzyme is apparently homogeneous and devoid of phospholipid or detergents, it would appear that reactivation does not involve reversal of inhibition such as by removal of a regulatory subunit or detergent from the catalytic subunit. Rather, we conclude that phospholipid is a necessary and integral portion of this enzyme whose active form is a phospholipid-protein complex. The apoenzyme also forms a complex with phosphatidylethanolamine and/or cardiolipin, which do not reactivate enzymic activity. Salt dissociates such complexes in contrast with the lecithin-apoenzyme complex. Binding of phospholipid is a necessary but not sufficient requisite for enzymic activity. The same energies of activation are obtained from Arrhenius plots for the membrane-bound enzyme and for the purified soluble enzyme reactivated with mitochondrial phospholipid or different lecithins. This observation is compatible with the view that the purified enzyme has not been adversely modified in the isolation. Furthermore, essentially the same energies of activation were obtained for saturated lecithins below their transition temperatures and for unsaturated lecithins above their transition temperatures. Hence, there is no indication that a lipid phase transition occurs to influence the activity of this enzyme.  相似文献   

17.
N E Gabriel  M F Roberts 《Biochemistry》1987,26(9):2432-2440
Asymmetric unilamellar vesicles are produced when short-chain phospholipids (fatty acyl chain lengths of 6-8 carbons) are mixed with long-chain phospholipids (fatty acyl chain lengths of 14 carbons or longer) in ratios of 1:4 short-chain/long-chain component. Short-chain lecithins are preferentially distributed on the outer monolayer, while a short-chain phosphatidylethanolamine derivative appears to localize on the inner monolayer of these spontaneously forming vesicles. Lanthanide NMR shift experiments clearly show a difference in head-group/ion interactions between the short-chain and long-chain species. Two-dimensional 1H NMR studies reveal efficient spin diffusion networks for the short-chain species embedded in the long-chain bilayer matrix. The short-chain lecithin is considerably more mobile than the long-chain component but has hindered motion compared to short-chain lecithin micelles. This differentiation in physical characteristics of the two phospholipid components is critical to understanding the activity of phospholipases toward these binary systems.  相似文献   

18.
Long-chain lecithins present in bilayer structures like vesicles or membranes are only very poor substrates for pancreatic phospholipases A2. This is probably due to the fact that pancreatic phospholipases A2 cannot penetrate into the densely packed bilayer structures. To improve the weak penetrating properties of pancreatic phospholipases A2, we prepared and characterized a number of pancreatic phospholipase A2 mutants that have various long acyl chains linked covalently to Lys116 in porcine and to Lys10 in bovine phospholipase A2 [Van der Wiele, F.C., Atsma, W., Dijkman, R., Schreurs, A.M.M., Slotboom, A.J., & De Haas, G.H. (1988) Biochemistry (preceding paper in this issue)]. When monomolecular surface layers of L- and D-didecanoyllecithin were used, it was found that the introduction of caprinic, lauric, palmitic, and oleic acid at Lys116 in the porcine enzyme increases its penetrating power from 13 to about 17, 20, 32, and 22 dyn/cm, respectively, before long lag periods were obtained. Incorporation of a palmitoyl moiety at Lys10 in the bovine enzyme shifted the penetrating power from 11 to about 25 dyn/cm. Only the best penetrating mutant, viz., porcine phospholipase A2 having a palmitoyl moiety at Lys116, was able to cause complete leakage of 6-carboxyfluorescein entrapped in small unilamellar vesicles of egg lecithin under nonhydrolytic conditions. Similarly, only this latter palmitoylphospholipase A2 completely hydrolyzed all lecithin in the outer monolayer of the human erythrocyte at a rate much faster than Naja naja phospholipase A2, the most powerful penetrating snake venom enzyme presently known.  相似文献   

19.
Synthesis of fatty acid retinyl esters determines systemic vitamin A levels and provides substrate for production of visual chromophore (11-cis-retinal) in vertebrates. Lecithin:retinol acyltransferase (LRAT), the main enzyme responsible for retinyl ester formation, catalyzes the transfer of an acyl group from the sn-1 position of phosphatidylcholine to retinol. To delineate the catalytic mechanism of this reaction, we expressed and purified a fully active, soluble form of this enzyme and used it to examine the possible formation of a transient acyl-enzyme intermediate. Detailed mass spectrometry analyses revealed that LRAT undergoes spontaneous, covalent modification upon incubation with a variety of phosphatidylcholine substrates. The addition of an acyl chain occurs at the Cys161 residue, indicating formation of a thioester intermediate. This observation provides the first direct experimental evidence of thioester intermediate formation that constitutes the initial step in the proposed LRAT catalytic reaction. Additionally, we examined the effect of increasing fatty acyl side chain length in phosphatidylcholine on substrate accessibility in this reaction, which provided insights into the function of the single membrane-spanning domain of LRAT. These observations are critical to understanding the catalytic mechanism of LRAT protein family members as well as other lecithin:acyltransferases wherein Cys residues are required for catalysis.  相似文献   

20.
Functional similarities between colipase and apolipoprotein C-II (apoC-II) in activating lipases suggest that apoC-II may, like colipase, preferentially interact with interfaces containing the substrates and products of lipolysis. To test this hypothesis, the binding of a peptide comprising residues of the cofactor implicated in lipid binding, apolipoprotein C-II(13-56), and, to a lesser extent, apoC-II, to monomolecular lipid films was characterized. The lipids used were a diacylphosphatidylcholine, a diacylglycerol, and a fatty acid. The peptide had an affinity for the argon-buffer interface and for all lipids consistent with a dissociation constant of <10 nM. Changes in surface pressure accompanying peptide binding were comparable to those reported for native apoC-II and indicate peptide miscibility with each of the lipids tested. The capacity of the surfaces to accommodate the peptide decreased with increasing lipid concentration in the interface, indicating competition between lipid and peptide for interfacial occupancy. At a lipid acyl chain density of 470 pmol/cm2, or 35 A2 per acyl chain, a lower limit of peptide adsorption was reached with all lipids. The limiting level of adsorption to phosphatidylcholine was only 1 pmol/cm2 compared with 6;-7 pmol/cm2 for fatty acid and diacylglycerol. Similar results were obtained with apoC-II.The difference in the extent of protein adsorption to lipid classes suggests that the distribution of apoC-II among lipoproteins will depend on their lipid composition and surface pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号