首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.  相似文献   

2.
Effective, reproducible, and scalable methods for DNA-lipid assembly are important for the success of non-viral vectors in in vivo gene therapy. We hypothesized DNA-lipid assembly would be optimal if started from a liquid monophase where both DNA and lipids separately form molecular or micellar solutions prior to mixing, without preexisting condensed lipid phases, thus allowing DNA-lipid assembly under conditions close to equilibrium. Previously, we found that mixing plasmid DNA, 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC), cholesterol and a cationic lipid, 1, 2-dioleoyl-3-(trimethylammonio) propane (DOTAP) in 50% (v/v) aqueous ethanol spontaneously produced an optically transparent solution. Upon ethanol removal, DNA-lipid nanoparticles (Genospheres™) were formed. For comparison with well-known technologies, different DNA-lipid particles were prepared by interaction of plasmid DNA and stable or ethanol-destabilized lipid vesicles by combining the components in water or 30% (v/v) aqueous ethanol, respectively. Among the three studied DNA-lipid assembly methods, only Genospheres combined the properties of small size (less than or around 100 nm), high incorporation of both lipid and DNA, high degree of DNA protection (dye accessibility 5-12%), a narrow distribution of particle density and when immuno-targeted, the highest transfection efficiency in HER2-overexpressing cells in vitro. We conclude that the Genosphere assembly methodology offers advantages for the development of effective, scalable and targetable non-viral gene delivery vectors.  相似文献   

3.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

4.
Plasmid DNA encoding a luciferase reporter gene was complexed with each of six different hybrid nanoparticles (NPs) synthesized from mixtures of poly (D, L-lactide-co-glycolide acid) (PLGA 50:50) and the cationic lipids DOTAP (1, 2-Dioleoyl-3-Trimethyammonium-Propane) or DC-Chol {3β-[N-(N', N'-Dimethylaminoethane)-carbamyl] Cholesterol}. Particles were 100-400 nm in diameter and the resulting complexes had DNA adsorbed on the surface (out), encapsulated (in), or DNA adsorbed and encapsulated (both). A luciferase reporter assay was used to quantify DNA expression in 293 cells for the uptake of six different NP/DNA complexes. Optimal DNA delivery occurred for 105 cells over a range of 500 ng - 10 μg of NPs containing 20-30 μg DNA per 1 mg of NPs. Uptake of DNA from NP/DNA complexes was found to be 500-600 times as efficient as unbound DNA. Regression analysis was performed and lines were drawn for DNA uptake over a four week interval. NP/DNA complexes with adsorbed NPs (out) showed a large initial uptake followed by a steep slope of DNA decline and large angle of declination; lines from uptake of adsorbed and encapsulated NPs (both) also exhibited a large initial uptake but was followed by a gradual slope of DNA decline and small angle of declination, indicating longer times of luciferase expression in 293 cells. NPs with encapsulated DNA only (in), gave an intermediate activity. The latter two effects were best seen with DOTAP-NPs while the former was best seen with DC-Chol-NPs. These results provide optimal conditions for using different hybrid NP/DNA complexes in vitro and in the future, will be tested in vivo.  相似文献   

5.
Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.  相似文献   

6.
A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer.   总被引:3,自引:0,他引:3  
The efficient release of nonviral gene carriers from endosomes is an important step for the successful delivery of DNA into the cell nucleus. A synthetic pH-sensitive anionic polymer, poly(propylacrylic acid) (PPAA), was designed to aid in endosomal escape of nonviral vectors and improve the transfection efficiencies with these vectors. Transfection of NIH3T3 fibroblasts with ternary physical mixtures of the cationic lipid DOTAP, pCMVbeta plasmid DNA, and PPAA showed marked enhancement of both gene expression levels and fraction of cells transfected compared to binary control mixtures of DOTAP and DNA. PPAA also significantly improved the serum-stability of DOTAP/DNA vectors. The DOTAP/DNA/PPAA vectors maintained high levels of transfection in media containing up to 50% serum. The striking enhancement of transfection efficiency with cationic lipid/DNA/PPAA mixtures, along with the enhanced serum-stability, suggests that PPAA may provide significant improvements for the in vivo intracellular delivery of drugs such as DNA, oligonucleotides, proteins, and peptides.  相似文献   

7.
Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future.  相似文献   

8.
Using solid-phase synthesis, lysine can be oligomerized by a reaction of the peptide carboxylate with the ε-amino group to produce nontoxic, biodegradable cationic peptides, ε-oligo(L-lysines). Here α-substituted derivatives of such ε-oligo(L-lysines) containing arginine and histidine in the side chain were tested as vectors for in vitro gene delivery. Combination of ε-oligolysines with the cationic lipid DOTAP and plasmid DNA resulted in transfection efficiency exceeding that of DOTAP alone, without significant increase in cytotoxicity. Synchrotron small-angle X-ray scattering studies revealed self-assembly of the DOTAP, ε-oligolysines, and DNA to ordered lamellar complexes. High transfection efficiency of the nanoparticles correlates with increase in zeta potential above +20 mV and requires particle size to be below 500 nm. The synergistic effect of branched ε-oligolysines and DOTAP in gene delivery can be explained by the increase in surface charge and by the supramolecular structure of the DOTAP/ε-oligolysine/DNA nanoparticles.  相似文献   

9.
Wang G  Pan L  Zhang Y  Wang Y  Zhang Z  Lü J  Zhou P  Fang Y  Jiang S 《PloS one》2011,6(11):e27605
Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol infections of foot and mouth disease virus (FMDV) and various approaches have been used to improve mucosal response to this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide)) nano/microparticles were used as an intranasal delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene as a means of enhancing mucosal and systemic immune responses in animals. Three eukaryotic expression plasmids with or without bovine IL-6 gene (pc-P12A3C, pc-IL2AP12A3C and pc-P12AIL3C) were generated. The two latter plasmids were designed with the IL-6 gene located either before or between the P12A and 3C genes, respectively, as a means of determining if the location of the IL-6 gene affected capsid assembly and the subsequent immune response. Guinea pigs and rats were intranasally vaccinated with the respective chitosan-coated PLGA nano/microparticles-loaded FMDV DNA vaccine formulations. Animals immunized with pc-P12AIL3C (followed by animals vaccinated with pc-P12A3C and pc-IL2AP12A3C) developed the highest levels of antigen-specific serum IgG and IgA antibody responses and the highest levels of sIgA (secretory IgA) present in mucosal tissues. However, the highest levels of neutralizing antibodies were generated in pc-IL2AP12A3C-immunized animals (followed by pc-P12AIL3C- and then in pc-P12A3C-immunized animals). pc-IL2AP12A3C-immunized animals also developed stronger cell mediated immune responses (followed by pc-P12AIL3C- and pc-P12A3C-immunized animals) as evidenced by antigen-specific T-cell proliferation and expression levels of IFN-γ by both CD4+ and CD8+ splenic T cells. The percentage of animals protected against FMDV challenge following immunizations with pc-IL2AP12A3C, pc-P12AIL3C or pc-P12A3C were 3/5, 1/5 and 0/5, respectively. These data suggested that intranasal delivery of cationic PLGA nano/microparticles loaded with various FMDV DNA vaccine formulations encoding IL-6 as a molecular adjuvant enhanced protective immunity against FMDV, particularly pc-IL2AP12A3C with IL-6 gene located before P12A3C gene.  相似文献   

10.
Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.  相似文献   

11.
Efficient gene transfer by transferrin lipoplexes in the presence of serum   总被引:1,自引:0,他引:1  
Cationic lipids are being used increasingly as reagents for gene delivery both in vitro and in vivo. One of the limitations to the application of cationic lipid-DNA complexes (lipoplexes) in vivo is the inhibition of gene delivery by serum. In this study, we have shown that transferrin (Tf)-lipoplexes, which had transferrin adsorbed at their surface via electrostatic interactions, are much more effective than plain lipoplexes in transfecting cells in the presence of relatively high concentrations (up to 60%) of fetal bovine serum (FBS). Serum even enhanced transfection by Tf-lipoplexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP)/dioleoylphosphatidylethanolamine (DOPE)/pCMVLacZ at high lipid/DNA (+/-) charge ratios, and inhibited lipofection for those with low charge ratios when they were added to the cells immediately after the preparation of complexes. The effect of serum on lipofection was dose-dependent. Preincubation of the complexes at 20 degrees C for 6 h led to serum resistance, even for the negatively charged transferrin-lipoplexes. A similar tendency was observed for DOTAP/cholesterol and DOTAP/DOPE/cholesterol liposomes. The percentage of cells transfected, measured by beta-galactosidase expression, also increased with the serum concentration. Cell viability was not affected significantly when the cells were incubated with the complexes for 4 h at 37 degrees C, followed by a 48-h incubation. Our findings extend the scope of previous studies where transferrin-lipoplexes were used to introduce DNA into cells, rendering these complexes and their future derivatives potential alternatives to viral vectors for gene delivery in vivo.  相似文献   

12.
Development of a nonviral gene delivery vehicle for systemic application   总被引:5,自引:0,他引:5  
Polycation vehicles used for in vitro gene delivery require alteration for successful application in vivo. Modification of polycations by direct grafting of additional components, e.g., poly(ethylene glycol) (PEG), either before or after DNA complexation, tend to interfere with polymer/DNA binding interactions; this is a particular problem for short polycations such as linear, beta-cyclodextrin-containing polycations (betaCDPs). Here, a new method of betaCDP polyplex (polycation/DNA composite structures) modification is presented that exploits the ability to form inclusion complexes between cyclodextrins and adamantane. Surface-PEGylated betaCDP polyplexes are formed by self-assembly of the polyplexes with adamantane-PEG conjugates. While unmodified polyplexes rapidly aggregate and precipitate in salt solutions, the PEGylated betaCDP polyplexes are stable at conditions of physiological salt concentration. Addition of targeting ligands to the adamantane-PEG conjugates allows for receptor-mediated delivery; galactosylated betaCDP-based particles reveal selective targeting to hepatocytes via the asialoglycoprotein receptor. Galactosylated particles transfect hepatoma cells with 10-fold higher efficiency than glucosylated particles (control), but show no preferential transfection in a cell line lacking the asialoglycoprotein receptor. Thus, surface modification of betaCDP-based polyplexes through the use of cyclodextrin/adamantane host/guest interactions endows the particles with properties appropriate for systemic application.  相似文献   

13.
Highly efficient drug carriers targeting hepatocyte is needed for treatment for liver diseases such as liver cirrhosis and virus infections. Galactose or N-acetylgalactosamine is known to be recognized and incorporated into the cells through asialoglycoprotein receptor (ASGPR) that is exclusively expressed on hepatocyte and hepatoma. In this study, we synthesized a galactose-modified lipid with aromatic ring with click chemistry. To make a complex with DNA, termed ‘lipoplex’, we prepared a binary micelle composed of cationic lipid; dioleoyltrimethylammoniumpropane (DOTAP) and galactose-modified lipid (D/Gal). We prepared lipoplex from plasmid DNA (pDNA) and D/Gal and examined the cell specificity and transfection efficiency. The lipoplex was able to interact with ASGPR immobilized on gold substrate in the quartz-crystal microbalance (QCM) sensor cell. The lipoplex induced high gene expression to HepG2 cells, a human hepatocellular carcinoma cell line, but not to A549 cells, a human alveolar adenocarcinoma cell line. The treatment with asialofetuin, which is a ligand for ASGPR and would work as a competitive inhibitor, before addition of the lipoplexes decreased the expression to HepG2 cells. These results indicate that D/Gal lipoplex was incorporated into HepG2 cells preferentially through ASGPR and the uptake was caused by galactose specific receptor. This delivery system to hepatocytes may overcome the problems for gene therapy and be used for treatment of hepatitis and hepatic cirrhosis.  相似文献   

14.
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.  相似文献   

15.
Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release profile of BSA from nanoparticles could be modulated by changing protein-polymer ratios and/or by varying homogenizing speed during multiple-emulsion preparation technique. The formulation prepared with protein-polymer ratio of 1:60 at 17,500 rpm gave maximum protein-loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared formulations. Decreased (10,000 rpm) or enhanced (24,000 rpm) homogenizing speeds resulted in increased polydispersion with larger particles having no better protein-loading and -release profiles in the present study.  相似文献   

16.
Nanoparticle transport through mucosal barriers is often restricted owing to mucoadhesion and the highly viscoelastic nature of mucus gels, which may limit efficient drug and gene delivery. We formulated sub-200 nm particulates from poly(d,l-lactic-co-glycolic) acid (PLGA) and the cationic surfactant dimethyldioctadecylammonium bromide (DDAB). Subsequently, anionic DNA was condensed to the surface to obtain gene carriers with transfection rates 50-fold higher than those of naked DNA in vitro. Using the method of multiple particle tracking (MPT), we measured the transport rates of dozens of individual PLGA-DDAB/DNA nanoparticles in real time in reconstituted pig gastric mucus (PGM) that possessed physiologically relevant rheological properties. The average transport rate of PLGA-DDAB/DNA nanoparticles was 10-fold higher than those of similar size polystyrene nanoparticles. Improved transport rates, stability in mucus, and ability to transfect cells make PLGA-DDAB/DNA nanoparticles candidates for mucosal DNA vaccines and gene therapy.  相似文献   

17.
Effective, reproducible, and scalable methods for DNA-lipid assembly are important for the success of non-viral vectors in in vivo gene therapy. We hypothesized DNA-lipid assembly would be optimal if started from a liquid monophase where both DNA and lipids separately form molecular or micellar solutions prior to mixing, without preexisting condensed lipid phases, thus allowing DNA-lipid assembly under conditions close to equilibrium. Previously, we found that mixing plasmid DNA, 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC), cholesterol and a cationic lipid, 1, 2-dioleoyl-3-(trimethylammonio) propane (DOTAP) in 50% (v/v) aqueous ethanol spontaneously produced an optically transparent solution. Upon ethanol removal, DNA-lipid nanoparticles (Genospheres) were formed. For comparison with well-known technologies, different DNA-lipid particles were prepared by interaction of plasmid DNA and stable or ethanol-destabilized lipid vesicles by combining the components in water or 30% (v/v) aqueous ethanol, respectively. Among the three studied DNA-lipid assembly methods, only Genospheres combined the properties of small size (less than or around 100 nm), high incorporation of both lipid and DNA, high degree of DNA protection (dye accessibility 5-12%), a narrow distribution of particle density and when immuno-targeted, the highest transfection efficiency in HER2-overexpressing cells in vitro. We conclude that the Genosphere assembly methodology offers advantages for the development of effective, scalable and targetable non-viral gene delivery vectors.  相似文献   

18.
BACKGROUND: The delivery of a complete genomic DNA locus in vivo may prove advantageous for complementation gene therapy, especially when physiological regulation of gene expression is desirable. Hydrodynamic tail vein injection has been shown to be a highly efficient means of non-viral delivery of plasmid DNA to the liver. Here, we apply hydrodynamic tail vein injection to deliver and express large genomic DNA inserts > 100 kb in vivo. METHODS: Firstly, a size series (12-172 kb) of bacterial artificial chromosome (BAC) plasmids, carrying human genomic DNA inserts, episomal retention elements, and the enhanced green fluorescent protein (EGFP) reporter gene, was delivered to mice by hydrodynamic tail vein injection. Secondly, an episomal BAC vector carrying the whole genomic DNA locus of the human low-density lipoprotein receptor (LDLR) gene, and an expression cassette for the LacZ reporter gene, was delivered by the same method. RESULTS: We show that the efficiency of delivery is independent of vector size, when an equal number of plasmid molecules are used. We also show, by LacZ reporter gene analysis, that BAC delivery within the liver is widespread. Finally, BAC-end PCR, RT-PCR and immunohistochemistry demonstrate plasmid retention and long-term expression (4 months) of human LDLR in transfected hepatocytes. CONCLUSION: This is the first demonstration of somatic delivery and long-term expression of a genomic DNA transgene > 100 kb in vivo and shows that hydrodynamic tail vein injection can be used to deliver and express large genomic DNA transgenes in the liver.  相似文献   

19.
To develop a drug delivery system for acute hepatic injury, we prepared Z-Asp, a general caspase inhibitor, encapsulated in poly (DL-lactic-co-glycolic acid) (50:50) (mol/mol) nanoparticles bearing poly-(N-p-vinylbenzyl-O--d-galactopyranosyl-[1-4]-d-gluconamide) (PVLA) on their surface. These nanoparticles specifically interacted with the primary cultured hepatocytes via the asialoglycoprotein receptors on surface and effectively inhibited the fulminant hepatic cell death induced by anti-mouse Fas antibody while these particles did not affect the cell death of an asialoglycoprotein receptor null cell line, A20. These nanoparticles are thus a promising therapy for acute liver injury.  相似文献   

20.
The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号