首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic phospholipase A(2)(cPLA(2)), an enzyme responsible for the generation of arachidonic acid, is located in the cytosolic compartment in most tissues and it translocates to membrane compartments when activated. We found that cPLA(2) distribution in pancreatic beta-cells is different from that of most other mammalian cells: it is evenly distributed throughout the beta-cell, in both cytoplasmic and nuclear compartments. Agents that increased intracellular Ca(2+) in the MIN6 beta-cell line also stimulated a redistribution of cPLA(2) immunoreactivity such that the majority of the enzyme moved from the nucleus to the cytoplasm. The time course of events was compatible with the elevation in Ca(2+) being responsible for translocation of cPLA(2). These observations suggest that cPLA(2) may be compartmentalised in unstimulated beta-cells, perhaps to limit its access to substrate prior to elevations in intracellular Ca(2+).  相似文献   

2.
In the current study, we have probed the role of cytosolic phospholipase A2 (cPLA2) activity in the cellular response to the calciotropic hormones, 1alpha,25,dihydroxy-vitamin D(3) [1alpha,25(OH)(2)D(3)] and PTH. Stimulation of rat enterocytes with either hormone, increased release of arachidonic acid (AA) 3H-AA] one-two fold in a concentration and time-dependent manner. The effect of either hormone on enterocytes was totally reduced by preincubation with the intracellular Ca(2+) chelator BAPTA-AM (5 microM), suggesting that the release of AA following cell exposure to the calciotropic hormones occurs mainly through a Ca(2+)-dependent mechanism involving activation of Ca(2+)-dependent cPLA2. Calciotropic homone stimulation of rat intestinal cells increases cPLA2 phosphorylation (three to four fold). This effect was decreased by PD 98059 (20 microM), a MAP kinase inhibitor, indicating that this action is, in part, mediated through activation of the MAP kinases ERK 1 and ERK2. Enterocytes exposure to 1alpha,25(OH)(2)D(3) (1nM) or PTH (10 nM) also resulted in P-cPLA2 translocation from cytosol to nuclei and membrane fractions, where phospholipase subtrates reside. Collectively, these data suggest that PTH and 1alpha,25(OH)(2)D(3) activate in duodenal cells, a Ca(2+)-dependent cytosolic PLA2 and attendant arachidonic acid release and that this activation requieres prior stimulation of intracellular ERK1/2. 1alpha,25(OH)(2)D(3) and PTH modulation of cPLA2 activity may change membrane fluidity and permeability and thereby affecting intestinal cell membrane function.  相似文献   

3.
The oscillatory [Ca(2+)](i) signals typically seen following physiologically relevant stimulation of phospholipase C-linked receptors are associated with a receptor-activated entry of Ca(2+), which plays a critical role in driving the oscillations and influencing their frequency. We have recently shown that this receptor-activated entry of Ca(2+) does not conform to the widely accepted "capacitative" model and, instead, reflects the activity of a distinct, novel Ca(2+) entry pathway regulated by arachidonic acid (Shuttleworth, T. J., and Thompson, J. L. (1998) J. Biol. Chem. 273, 32636-32643). We now show that the generation of arachidonic acid under these conditions results from the activity of a type IV cytosolic phospholipase A(2) (cPLA(2)). Although cPLA(2) activation commonly involves a Ca(2+)-dependent translocation to the membrane, at these low agonist concentrations cPLA(2) activation was independent of increases in [Ca(2+)](i), and no detectable translocation to the membrane occurs. Nevertheless, stimulation of cPLA(2) activity was confined to the membrane fraction, where an increase in phosphorylation of the enzyme was observed. We suggest that, at the low agonist concentrations associated with oscillatory [Ca(2+)](i) signals, cPLA(2) activation involves an increased phosphorylation of a discrete pool of the total cellular cPLA(2) that is already localized within the membrane fraction at resting [Ca(2+)](i).  相似文献   

4.
Increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) promote cytosolic phospholipase A(2) (cPLA(2)) translocation to intracellular membranes. The specific membranes to which cPLA(2) translocates and the [Ca(2+)](i) signals required were investigated. Plasmids of EGFP fused to full-length cPLA(2) (EGFP-FL) or to the cPLA(2) C2 domain (EGFP-C2) were used in Ca(2+)/EGFP imaging experiments of cells treated with [Ca(2+)](i)-mobilizing agonists. EGFP-FL and -C2 translocated to Golgi in response to sustained [Ca(2+)](i) greater than approximately 100-125 nm and to Golgi, ER, and perinuclear membranes (PNM) at [Ca(2+)](i) greater than approximately 210-280 nm. In response to short duration [Ca(2+)](i) transients, EGFP-C2 translocated to Golgi, ER, and PNM, but EGFP-FL translocation was restricted to Golgi. However, EGFP-FL translocated to Golgi, ER, and PNM in response to long duration transients. In response to declining [Ca(2+)](i), EGFP-C2 readily dissociated from Golgi, but EGFP-FL dissociation was delayed. Agonist-induced arachidonic acid release was proportional to the [Ca(2+)](i) and to the extent of cPLA(2) translocation. In summary, we find that the differential translocation of cPLA(2) to Golgi or to ER and PNM is a function of [Ca(2+)](i) amplitude and duration. These results suggest that the cPLA(2) C2 domain regulates differential, Ca(2+)-dependent membrane targeting and that the catalytic domain regulates both the rate of translocation and enzyme residence.  相似文献   

5.
Cytosolic phospholipase A(2)-alpha (cPLA(2)) plays an important role in the release of arachidonic acid and in cell injury. Activation of cPLA(2) is dependent on a rise in cytosolic Ca(2+) concentration, membrane association via the Ca(2+)-dependent lipid binding (CaLB) domain, and phosphorylation. This study addresses the activation of cPLA(2) via potential association with membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)), including the role of a "pleckstrin homology (PH)-like" region of cPLA(2) (amino acids 263-354). In cells incubated with complement, phorbol myristate acetate+the Ca(2+) ionophore, A23187, or epidermal growth factor+A23187, expression of the PH domain of phospholipase C-delta1 (which sequesters membrane PIP(2)) attenuated cPLA(2) activity. Stimulated cPLA(2) activity was also attenuated by the expression of cPLA(2) 135-366, or cPLA(2) 2-366, and expression of a PIP(2)-specific 5'-phosphatase. However, in a yeast-based assay that tests the ability of proteins to bind to membrane lipids, including PIP(2), with high affinity, only cPLA(2) 1-200 (CaLB domain) was able to interact with membrane lipids, whereas cPLA(2)s 135-366, 2-366, 201-648, and 1-648 were unable to do so. Therefore, cPLA(2) activity can be modulated by sequestration or depletion of cellular PIP(2), although the interaction of cPLA(2) with membrane PIP(2) appears to be indirect, or of weak affinity.  相似文献   

6.
Murakami M  Das S  Kim YJ  Cho W  Kudo I 《FEBS letters》2003,546(2-3):251-256
In response to Ca(2+) signaling, cytosolic phospholipase A(2)alpha (cPLA(2)alpha) translocates from the cytosol to the perinuclear membrane, where downstream eicosanoid-synthetic enzymes, such as cyclooxygenase (COX), are localized. Although the spatiotemporal perinuclear colocalization of cPLA(2)alpha and COXs has been proposed to be critical for their functional coupling leading to prostanoid production, definitive evidence for this paradigm has remained elusive. To circumstantiate this issue, we took advantage of a chimeric cPLA(2)alpha mutant harboring the C2 domain of protein kinase Calpha, which translocates to the plasma membrane following cell activation. Transfection analyses of the native or chimeric cPLA(2)alpha in combination with COX-1 or COX-2 revealed that, even though the arachidonate-releasing capacities of native and mutant cPLA(2)alpha were comparable, prostaglandin production by mutant cPLA(2)alpha was markedly impaired as compared with that by native cPLA(2)alpha. We thus conclude that the perinuclear localization of cPLA(2)alpha is preferential, even if not obligatory, for efficient coupling with COXs.  相似文献   

7.
Activation of the cytosolic Group IV phospholipase A(2) (cPLA(2)) by agonists has been correlated with the direct phosphorylation of the enzyme by members of the mitogen-activated protein kinase (MAPK) cascade. Phosphorylation of the cPLA(2) increases the specific activity of the enzyme, thereby stimulating the arachidonic acid release. We show here, however, that conditions that lead to full phosphorylation of the cPLA(2) do not lead to enhanced AA release. As the above observations were made under both Ca(2+)-dependent and Ca(2+)-independent conditions, they emphasize that the current paradigm for activation of the cPLA(2) in cells involving both phosphorylation and Ca(2+) is incomplete and that other factors should be taken into account.  相似文献   

8.
The phospholipid-binding specificities of C(2) domains, widely distributed Ca(2+)-binding modules, differ greatly despite similar three-dimensional structures. To understand the molecular basis for this specificity, we have examined the synaptotagmin 1 C(2)A domain, which interacts in a primarily electrostatic, Ca(2+)-dependent reaction with negatively charged phospholipids, and the cytosolic phospholipase A(2) (cPLA(2)) C(2) domain, which interacts by a primarily hydrophobic Ca(2+)-dependent mechanism with neutral phospholipids. We show that grafting the short Ca(2+)-binding loops from the tip of the cPLA(2) C(2) domain onto the top of the synaptotagmin 1 C(2)A domain confers onto the synaptotagmin 1 C(2)A domain the phospholipid binding specificity of the cPLA(2) C(2) domain, indicating that the functional specificity of C(2) domains is determined by their short top loops.  相似文献   

9.
Many cells utilize a GTP-dependent pathway to trigger exocytosis in addition to Ca(2+)-triggered exocytosis. However, little is known about the mechanism by which GTP triggers exocytosis independent of Ca(2+). We used dual-color evanescent field microscopy to compare the motion and fusion of large dense core vesicles stimulated by either mastoparan (Mas) in Ca(2+)-free conditions or high K(+) in the presence of Ca(2+). We demonstrate that Mas is hardly effective in triggering the fusion of the predocked vesicles but predominantly mobilizes cytosolic vesicles. In contrast, Ca(2+)-dependent exocytosis is largely due to predocked vesicles. Fusion kinetics analysis and carbon-fiber amperometry reveal that Mas induces a brief 'kiss-and-run' fusion and releases only a small amount of the cargo, whereas Ca(2+) stimulates a more persistent opening of the fusion pore and larger release of the contents. Furthermore, we show that Mas-released vesicles require a much shorter time to reach fusion competence once they approach the plasma membrane. Our data suggest the involvement of different mechanisms not only in triggering and fusion but also in the docking and priming process for Ca(2+)- and GTP-dependent exocytosis.  相似文献   

10.
The eicosanoids are centrally involved in the onset and resolution of inflammatory processes. A key enzyme in eicosanoid biosynthesis during inflammation is group IVA phospholipase A2 (also known as cytosolic phospholipase A2alpha, cPLA2alpha). This enzyme is responsible for generating free arachidonic acid from membrane phospholipids. cPLA2alpha translocates to perinuclear membranes shortly after cell activation, in a process that is governed by the increased availability of intracellular Ca2+. However, cPLA2alpha also catalyzes membrane phospholipid hydrolysis in response to agonists that do not mobilize intracellular Ca2+. How cPLA2alpha interacts with membranes under these conditions is a major, still unresolved issue. Here, we report that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] promotes translocation of cPLA2alpha to perinuclear membranes of intact cells in a manner that is independent of rises in the intracellular Ca2+ concentration. PtdIns(4,5)P2 anchors the enzyme to perinuclear membranes and allows for a proper interaction with its phospholipid substrate to release arachidonic acid.  相似文献   

11.
The effect of ceramide on Ca2+-dependent translocation of cytosolic phospholipase A2 (cPLA2) to membranes was studied. Pretreatment of platelets with sphingomyelinase or C6-ceramide (N-hexanoylsphingosine) led to apparent enhancement of Ca2+-ionophore A23187-stimulated arachidonic acid release but did not affect the cytosolic phospholipase A2 (cPLA2) activity. Under these conditions, the cPLA2 proteins in membranes increased significantly, compared with those by A23187 alone. Sphingomyelinase and C6-ceramide, but not C6-dihydroceramide, a control analog of C6-ceramide, also facilitated the Ca2+-dependent increase in the cPLA2 protein, as well as the activity, in membranes induced by addition of Ca2+ into platelet lysate. Protein kinase Calpha, which possesses a Ca2+-dependent lipid binding domain, was increased in membranes in a Ca2+-dependent manner, but the increase was not accelerated by sphingomyelinase or C6-ceramide. These findings suggest that ceramide in membranes potentiates Ca2+-dependent cPLA2 translocation from cytosol to membranes, probably through modification of membrane phospholipid organization.  相似文献   

12.
We studied the effects of the divalent cation ionophore A23187 on apoptotic signaling in MH1C1 cells. Addition of A23187 caused a fast rise of cytosolic Ca(2+) ([Ca(2+)](c)), which returned close to the resting level within about 40 s. The [Ca(2+)](c) rise was immediately followed by phospholipid hydrolysis, which could be inhibited by aristolochic acid or by pretreatment with thapsigargin in Ca(2+)-free medium, indicating that the Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) was involved. These early events were followed by opening of the mitochondrial permeability transition pore (PTP) and by apoptosis in about 30% of the cell population. In keeping with a cause-effect relationship between addition of A23187, activation of cPLA(2), PTP opening, and cell death, all events but the [Ca(2+)](c) rise were prevented by aristolochic acid. The number of cells killed by A23187 was doubled by treatment with 0.5 microm MK886 and 5 microm indomethacin, which inhibit arachidonic acid metabolism through the 5-lipoxygenase and cyclooxygenase pathway, respectively. Consistent with the key role of free arachidonic acid, its levels increased within minutes of treatment with A23187; the increase being more pronounced in the presence of MK886 plus indomethacin. Cell death was preceded by cytochrome c release and cleavage of caspase 9 and 3, but not of caspase 8. All these events were prevented by aristolochic acid and by the PTP inhibitor cyclosporin A. Thus, A23187 triggers the apoptotic cascade through the release of arachidonic acid by cPLA(2) in a process that is amplified when transformation of arachidonic acid into prostaglandins and leukotrienes is inhibited. These findings identify arachidonic acid as the causal link between A23187-dependent perturbation of Ca(2+) homeostasis and the effector mechanisms of cell death.  相似文献   

13.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

14.
Cytosolic phospholipase A2 (cPLA2) catalyzes release of arachidonic acid from membranes following translocation to Golgi and endoplasmic reticulum. In response to an intracellular calcium concentration ([Ca2+]i) increase, the C2 domain binds Ca2+ and brings the catalytic domain into proximity with its phospholipid substrate. Because membrane residence is important in the regulation of cPLA2 activity, we explored the contributions of the C2 and catalytic domains in mediating membrane residence using an imaging approach in live cells with fluorescent protein chimeras of cPLA2. The isolated cPLA2 C2 domain associated with Golgi membranes rapidly in proportion to the [Ca2+]i, allowing for its use as a [Ca2+]i indicator. cPLA2 association with Golgi was slower than the isolated C2 domain in response to a [Ca2+]i increase. After [Ca2+]i decrease, cPLA2 remained associated with membrane in a Ca(2+)-independent fashion whereas C2 domain rapidly dissociated. Ca(2+)-independent membrane association was greatly reduced by mutation of Trp464, located at the membrane-exposed face of the catalytic domain, to Gly or Ala. Mutation of Trp464 to Phe supported Ca(2+)-independent association similar to wild type. These results demonstrate a role for the cPLA2 catalytic domain in regulating membrane association and membrane residence time.  相似文献   

15.
The plaA gene encoding a protein that contains the cytosolic Phospholipase A(2) (cPLA(2)) motif is cloned for the first time from the filamentous fungus, Aspergillus nidulans. The translated 837 amino acid protein product of plaA comprises conserved lipase regions that are present in most mammalian cPLA(2) homologs. High expression of plaA was observed in glucose-lactose medium by Northern blot analyses. Deletion mutants of plaA grew and formed conidia similar to the wild-type strain, but showed decreased PLA(2) activity. Expression of the N-terminal truncated form of plaA in yeast cells resulted in increased Ca(2+)-dependent PLA(2) activity with (14)C-labeled phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as substrates, compared with vector-transformed cells. In conclusion, we have identified and cloned a phospholipid-hydrolyzing novel cPLA(2) protein from A. nidulans for the first time.  相似文献   

16.
Ligation of macrophage alpha(2)-macroglobulin signalling receptors (alpha(2)MSR) with activated alpha(2)-macroglobulin (alpha(2)M*) increases intracellular Ca(2+), and cytosolic phospholipase A(2) (cPLA(2)) and phospholipase D activities. In view of the relationship between cellular Ca(2+) and mitogenesis, we examined the effect of the product of cPLA(2) activity, arachidonic acid (AA), on nuclear Ca(2+) levels in macrophages stimulated with alpha(2)M*, platelet derived growth factor, and bradykinin. AA addition increased Ca(2+) levels in Fura-2/AM loaded nuclei from both buffer-treated and agonist-stimulated cells, but the increase in stimulated macrophages was 2-4-fold higher. Preincubation of Fura-2/AM loaded nuclei with EGTA or BAPTA/AM abolished AA-induced increase in nuclear Ca(2+) levels. Preincubation of nuclei with indomethacin did not affect AA-induced increase in nuclear Ca(2+) in agonist-stimulated nuclei. It is concluded that in macrophages stimulated with various agonists, AA, derived from cPLA(2)-dependent hydrolysis of phospholipids, plays a significant role in regulating nuclear Ca(2+) levels and thus nuclear functions.  相似文献   

17.
cPLA(2) plays a key role in many signal transduction cascades by hydrolyzing arachidonic acid from membrane phospholipids. Tight control of cPLA(2) activity by a number of regulatory mechanisms is essential to its cellular function. We recently described the localization of cPLA(2) in clusters in fibroblasts and now propose that these clusters reflect a localized inactive pool from which active monomers can be recruited to keep cPLA(2) activity under control on the subcellular level. Using an electron microscopic in vitro approach, we show that cPLA(2) monomers, but not the clusters, bind to membranes in a Ca(2+)-dependent manner. This binding is accompanied by hydrolytic activity. The present data combined with our previous observation of a relative abundance of clusters over monomers in fixed fibroblasts [Bunt, G., de Wit, J., van den Bosch, H., Verkleij, A., and Boonstra, J. (1997) J. Cell Sci. 110, 2449-2459] gives rise to a concept of cPLA(2) regulation in which small amounts of active monomers are recruited to fulfill their function upon stimulation. This is in contrast to processes described for inflammatory cells, where a substantial part of the cytoplasmically localized cPLA(2) translocates to the perinuclear region upon stimulation to become active. Small-scale regulation of cPLA(2) by the proposed cluster-monomer cycle allows local and strictly confined control of cPLA(2) activity, apparently necessary for its cellular role in fibroblasts.  相似文献   

18.
We examined the mechanisms underlying the activation of group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) contributing to the supply of fatty acids required for the formation of cholesteryl ester in oxidized low-density lipoprotein (oxLDL)-stimulated macrophages. The possible involvement of oxidized lipids was also examined. In [(3)H]arachidonic acid-labeled mouse peritoneal macrophages, oxLDL stimulated the release of arachidonic acid, which was suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cPLA(2)alpha inhibitor. oxLDL induced an increase in PLA(2)alpha levels in the membrane fraction without affecting those in whole cells or the activity in the lysate. Among 13-hydroxyoctadecadienoic acid (13-HODE), 7-ketocholesterol, and 25-hydroxycholesterol, oxidized lipids present in oxLDL particles, only 13-HODE induced the release of arachidonic acid, which was also sensitive to MAFP. Under conditions where addition of Ca(2+) to the cell lysate induced an increase in cPLA(2)alpha protein in the membrane fraction, preincubation with 13-HODE facilitated the Ca(2+)-dependent translocation of cPLA(2)alpha. Furthermore, 13-HODE increased cholesteryl ester formation in the presence of [(3)H]cholesterol. These results suggest that 13-HODE mediates the oxLDL-induced activation of cPLA(2)alpha through an increase in cPLA(2)alpha protein in the membranes, thus contributing, in part, to the supply of fatty acids required for the esterification of cholesterol in macrophages.  相似文献   

19.
It has become evident that a Ca(2+)-dependent release of arachidonic acid (AA) and subsequent formation of bioactive lipid mediators such as prostaglandins and leukotrienes in red blood cells (RBCs) can modify physiological functions of neighboring RBCs and platelets. Here we identified a novel type of cytosolic PLA(2) in bovine and human RBCs and purified it to apparent homogeneity with a 14,000-fold purification. The purified enzyme, termed rPLA(2), has a molecular mass of 42 kDa and reveals biochemical properties similar to group IV cPLA(2), but shows different profiles from cPLA(2) in several column chromatographies. Moreover, rPLA(2) did not react with any of anti-cPLA(2) and anti-sPLA(2) antibodies and was identified as an unknown protein in matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Divalent metal ions tested exhibited similar effects between rPLA(2) and cPLA(2), whereas mercurials inhibited cPLA(2) but had no effect on rPLA(2). Antibody against the 42-kDa protein not only precipitated the rPLA(2) activity, but also reacted with the 42-kDa protein from bovine and human RBCs in immunoblot analysis. The 42-kDa protein band was selectively detected in murine fetal liver cells known as a type of progenitor cells of RBCs. It was found that EA4, a derivative of quinone newly developed as an inhibitor for rPLA(2), inhibited a Ca(2+) ionophore-induced AA release from human and bovine RBCs, indicating that this enzyme is responsible for the Ca(2+)-dependent AA release from mammalian RBCs. Finally, erythroid progenitor cell assay utilizing diaminobenzidine staining of hemoglobinized fetal liver cells showed that rPLA(2) detectable in erythroid cells was down-regulated when differentiated to non-erythroid cells. Together, our results suggest that the 42-kDa rPLA(2) identified as a novel form of Ca(2+)-dependent PLA(2) may play an important role in hemostasis, thrombosis, and/or erythropoiesis through the Ca(2+)-dependent release of AA.  相似文献   

20.
The Ca(2+)-sensing receptor (CaR) stimulates a number of phospholipase activities, but the specific phospholipases and the mechanisms by which the CaR activates them are not defined. We investigated regulation of phospholipase A(2) (PLA(2)) by the Ca(2+)-sensing receptor (CaR) in human embryonic kidney 293 cells that express either the wild-type receptor or a nonfunctional mutant (R796W) CaR. The PLA(2) activity was attributable to cytosolic PLA(2) (cPLA(2)) based on its inhibition by arachidonyl trifluoromethyl ketone, lack of inhibition by bromoenol lactone, and enhancement of the CaR-stimulated phospholipase activity by coexpression of a cDNA encoding the 85-kDa human cPLA(2). No CaR-stimulated cPLA(2) activity was found in the cells that expressed the mutant CaR. Pertussis toxin treatment had a minimal effect on CaR-stimulated arachidonic acid release and the CaR-stimulated rise in intracellular Ca(2+) (Ca(2+)(i)), whereas inhibition of phospholipase C (PLC) with completely inhibited CaR-stimulated PLC and cPLA(2) activities. CaR-stimulated PLC activity was inhibited by expression of RGS4, an RGS (Regulator of G protein Signaling) protein that inhibits Galpha(q) activity. CaR-stimulated cPLA(2) activity was inhibited 80% by chelation of extracellular Ca(2+) and depletion of intracellular Ca(2+) with EGTA and inhibited 90% by treatment with W7, a calmodulin inhibitor, or with KN-93, an inhibitor of Ca(2+), calmodulin-dependent protein kinases. Chemical inhibitors of the ERK activator, MEK, and a dominant negative MEK, MEK(K97R), had no effect on CaR-stimulated cPLA(2) activity but inhibited CaR-stimulated ERK activity. These results demonstrate that the CaR activates cPLA(2) via a Galpha(q), PLC, Ca(2+)-CaM, and calmodulin-dependent protein kinase-dependent pathway that is independent the ERK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号