首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quorum sensing and swarming migration in bacteria   总被引:21,自引:0,他引:21  
Bacterial cells can produce and sense signal molecules, allowing the whole population to initiate a concerted action once a critical concentration (corresponding to a particular population density) of the signal has been reached, a phenomenon known as quorum sensing. One of the possible quorum sensing-regulated phenotypes is swarming, a flagella-driven movement of differentiated swarmer cells (hyperflagellated, elongated, multinucleated) by which bacteria can spread as a biofilm over a surface. The glycolipid or lipopeptide biosurfactants thereby produced function as wetting agent by reducing the surface tension. Quorum sensing systems are almost always integrated into other regulatory circuits. This effectively expands the range of environmental signals that influence target gene expression beyond population density. In this review, we first discuss the regulation of AHL-mediated surface migration and the involvement of other low-molecular-mass signal molecules (such as the furanosyl borate diester AI-2) in biosurfactant production of different bacteria. In addition, population density-dependent regulation of swarmer cell differentiation is reviewed. Also, several examples of interspecies signalling are reported. Different signal molecules either produced by bacteria (such as other AHLs and diketopiperazines) or excreted by plants (such as furanones, plant signal mimics) might influence the quorum sensing-regulated swarming behaviour in bacteria different from the producer. On the other hand, specific bacteria can reduce the local available concentration of signal molecules produced by others. In the last part, the role and regulation of a surface-associated movement in biofilm formation is discussed. Here we also describe how quorum sensing may disperse existing biofilms and control the interaction between bacteria and higher organisms (such as the Rhizobium-bean symbiosis).  相似文献   

3.
Bacteriocins of gram-positive bacteria.   总被引:21,自引:0,他引:21       下载免费PDF全文
In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered.  相似文献   

4.
An antibacterial substance produced by Lactobacillus plantarum NRIC 149 was identified as a bacteriocin on the basis of its narrow inhibitory spectrum, proteinaceous nature and the bactericidal mode of its action. The bacteriocin, designated plantaricin-149, was produced during the log phase by the producer strain, and was most active at pH 5.0. From scanning electron microscopic observation, plantaricin-149 caused morphological changes in sensitive bacteria in the log phase. Plantaricin-149 was purified by ultrafiltration, anion-exchange chromatography and reverse-phase HPLC. The molecular mass of plantaricin-149 was estimated to be 2.2 kDa by SDS-PAGE, and the N-terminal amino acid sequence was determined to be NH2-Tyr-Ser-Leu-Gln-Met-Gly-Ala-Thr-Ala-Ile-Lys-Gln-Val-Lys-Lys-Leu-Phe-Lys-Lys-Gly-Gly.  相似文献   

5.
Boza is a low-pH and low-alcohol cereal-based beverage produced in the Balkan Peninsula. From a total population of 9 × 106 colony-forming units ml−1, four isolates (JW3BZ, JW6BZ, JW11BZ, and JW15BZ) produced bacteriocins active against a broad spectrum of Gram-positive bacteria. Bacteriocin JW15BZ inhibited the growth of Klebsiella pneumoniae. The producer strains were identified as Lactobacillus plantarum (strains JW3BZ and JW6BZ) and L. fermentum (strains JW11BZ and JW15BZ). The spectrum of antimicrobial activity, characteristics, and mode of action of these bacteriocins were compared with bacteriocins previously described for lactic-acid bacteria isolated from boza.  相似文献   

6.
Clostriodium acetobutylicum ATCC 824 produced an autobacteriocin. A precise method for the quantitative estimation of the autobacteriocin activity is described. Release of the autobacteriocin occurs at the end of the exponential phase of growth. The producer strain and four strains of bacteria belonging to the family Bacillaceae were sensitive to the bacteriocin. The thermolabile autobacteriocin was stable between pH 3.5 and pH 5. This autobacteriocin has a bacteriolytic effect which increases with the age of the cells and with the butanol concentration. This autobacteriocin seemed to be an autolysin and a possible regulation of its action by lipoteichoic acids is discussed.  相似文献   

7.
Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds   总被引:11,自引:0,他引:11  
A survey of antibiotic-producing bacteria from the microbial flora attached to seaweeds and the study of their antibiotic capacities were carried out. From 5 species of green and brown marine algae, 224 bacterial strains were isolated and tested for antibiotic production. A total of 38 strains displayed antibiotic activity, withEnteromorpha intestinalis being the source of the highest number of producer strains. All epiphytic bacteria with antibiotic activity were assigned to thePseudomonas-Alteromonas group. Antagonism assays among the isolates demonstrated that each producer strain inhibits the growth of the other producers, as well as of some nonproducer strains also isolated from seaweeds. Likewise, an autoinhibitory effect was observed in all antibiotic-producing strains. Antibacterial spectra of all the strains include activity againstStaphylococcus, Alcaligenes, Pseudomonas, Vibrio, Pasteurella, andAchromobacter. A preliminary characterization of the antibiotic substances produced by these epiphytic bacteria demonstrated that they are low molecular weight compounds, thermolabile, and anionic and are not affected by proteolytic enzymes. The role that these inhibitory substances can play in the natural environment is discussed.  相似文献   

8.
Antimicrobial proteins and peptides produced by bacteria, termed bacteriocins, are widely acknowledged to be important contributors to their producer organism survival. Enterocin A, enterocin B, enterocin P and enterolysin A belong to the best studied enterocins, i.e., bacteriocins produced by enterococci and streptococci. Twenty-one enterococcal and seven streptococcal isolates were analysed for bacteriocin-like activity production and resistance by overlay test. Up to 50% of tested strains showed antibacterial activity at least against one indicator strain. The occurrence of enterocin B structural gene in several isolates was confirmed by PCR method. The results of this study should broaden knowledge of bacteriocin-like activity production and resistance among gram-positive bacteria.  相似文献   

9.
Antimicrobial proteins and peptides produced by bacteria, termed bacteriocins, are widely acknowledged to be important contributors to their producer organism survival. Enterocin A, enterocin B, enterocin P and enterolysin A belong to the best studied enterocins, i.e., bacteriocins produced by enterococci and streptococci. Twenty-one enterococcal and seven streptococcal isolates were analysed for bacteriocin-like activity production and resistance by overlay test. Up to 50% of tested strains showed antibacterial activity at least against one indicator strain. The occurrence of enterocin B structural gene in several isolates was confirmed by PCR method. The results of this study should broaden knowledge of bacteriocin-like activity production and resistance among gram-positive bacteria.  相似文献   

10.
Cross protection of members of the domains Bacteria, Archaea, and lower Eukaryota from stress factors due to the action of extracellular low-molecular metabolites with adaptogenic functions was shown. The adaptogen produced by Luteococcus japonicus subsp. casei and described previously as a reactivating factor (RF) was shown to protect the yeasts Saccharomyces cerevisiae, archaea Haloarcula marismorti, and the cells of higher eukaryotes (HeLa) against weak stressor impacts. Production of an archaeal extracellular metabolite with a weak adaptogenic effect of the producer cells and capable of a threefold increase in survival of heat-inactivated yeast cells was discovered. Our results confirm the similarity of the compensatory adaptive reactions in prokaryotes (bacteria and archaea) and eukaryotes.  相似文献   

11.
Biogenic amines (BAs) are produced primarily by microorganisms found in fermented foods and are often implicated in food poisoning. BA-producing bacteria found in fermented soybean pastes were isolated and characterized using a decarboxylating medium and multiplex PCR analysis. Two BA-producing bacteria were isolated from traditional soybean pastes: one was a histamine-producing Clostridium strain, and the other was a tyramine-producing Pseudomonas strain. The Clostridium strain was determined to be a potent histamine producer among the cultures tested. Synthesis of tyramine by Pseudomonas sp. T1 was observed for the first time in this study.  相似文献   

12.
BackgroundUnderstanding how complex antibiotics are synthesised by their producer bacteria is essential for creation of new families of bioactive compounds. Thiomarinols, produced by marine bacteria belonging to the genus Pseudoalteromonas, are hybrids of two independently active species: the pseudomonic acid mixture, mupirocin, which is used clinically against MRSA, and the pyrrothine core of holomycin.Conclusions/SignificancePlasmid pTML1 provides a paradigm for combining independent antibiotic biosynthetic pathways or using mutasynthesis to develop a new family of hybrid derivatives that may extend the effective use of mupirocin against MRSA.  相似文献   

13.
F. VILLANI, G. SALZANO, E. SORRENTINO, O. PEPE, P. MARINO AND S. COPPOLA. 1993. Enterococcus faecalis 226, isolated from natural whey cultures utilized as starters in the manufacture of mozzarella cheese from water-buffalo milk, produces a bacteriocin designated enterocin 226NWC. The bacteriocin was isolated from culture supernatant fluids of the producer strain and was active against strains of the same species and Listeria monocytogenes, but not against useful lactic acid bacteria. Enterocin 226NWC is a protein with an apparent molecular weight of about 5800; it is relatively heat-stable and has a bactericidal mode of action. Listeria monocytogenes, growing in the presence of the enterocin 226NWC producer strain in broth and in reconstituted skim milk, was inhibited.  相似文献   

14.
海藻酸分解菌研究进展   总被引:1,自引:0,他引:1  
海藻酸分解菌是一类能够自身合成海藻酸裂解酶,能够降解并同化海藻酸的微生物。海藻酸分解菌是海藻酸裂解酶的重要来源,其产生的海藻酸裂解酶具有种类多、反应条件温和、酶活高和易于大规模生产等优点,并且在生物、医疗、化工等领域有重要的应用价值。在过去的几十年里,海藻酸分解菌一直作为海藻酸裂解酶生产者的角色被研究和应用。但随着近年来能源危机的加剧,以海藻酸等海藻生物质为原料转化生物能源成为解决能源危机的潜在途径,因此,海藻酸分解菌又有了崭新的研究领域,即海藻酸分解菌利用海藻酸发酵生产生物能源。本文从海藻酸分解菌及其海藻酸裂解酶的种类和特性、海藻酸分解菌的代谢以及海藻酸分解菌基因工程等方面,介绍海藻酸分解菌的研究现状,并展望未来的发展趋势。  相似文献   

15.
Two strains of Lactobacillus crispatus (15L08 and 21L07) and one strain of Lactobacillus jensenii (5L08) were selected from amongst 100 isolates from the vaginas of healthy premenopausal women for properties relevant to mucosal colonization and the production of H2O2 and/or bacteriocin-like compound. All three strains self-aggregated and adhered to vaginal epithelial cells, displacing well-known vaginal pathogens, such as Gardnerella vaginalis and Candida albicans. Lactobacillus crispatus 15L08 was characterized as a potential H2O2 producer. A high level of bacteriocin-like compound was synthesized by L. jensenii 5L08, with a bactericidal mode of action for G. vaginalis, C. albicans and Escherichia coli. However, H2O2-dependent activity alone was not sufficient to inhibit the growth of C. albicans. Simultaneous actions of H2O2 and bacteriocin-like compound produced by lactobacilli may be important for antagonizing pathogenic bacteria. These strains of lactobacilli may be excellent candidates for eventual use as probiotics to restore the normal microbial communities in the vaginal ecosystem.  相似文献   

16.
A novel antibacterial substance produced by a strain isolated from Bulgarian yellow cheese was characterized. The producer strain was identified by molecular typing to belong to the species Lactobacillus delbrueckii , which is a rare producer of bacteriocins. The inhibitory agent was heat stable and active against lactic acid bacteria species and several food-borne pathogens : Listeria monocytogenes , Staphylococcus aureus , Enterococcus faecalis , Escherichia coli , Yersinia enterocolitica and Y. pseudotuberculosis . Its sensitivity to amylolitic enzymes and lipase suggested that a lipid and carbohydrate moiety could be important for the activity. The amino acid content of the purified bacteriocin was estimated to 29 amino acids. The bacteriocin was shown to be small (3·6–6 kDa) by three different methods : HPLC gel-filtration, SDS-PAGE and amino acid contents.  相似文献   

17.
Molecular Biology Reports - Bacteriocins are peptides produced by various species of bacteria, especially lactic acid bacteria (LAB), which have a large spectrum of action against spoilage bacteria...  相似文献   

18.
AIM: To purify and characterize the bacteriocin produced by strain MRX1. METHODS AND RESULTS: A bacteriocin-producing strain was isolated and identified as Bacillus cereus. The bacteriocin, called cerein MRX1, was purified from the culture supernatant using hydrophobic interaction, cation-exchange chromatography and RP-HPLC. It could also be purified in abundance from the cell surfaces of the producer strain. Mass spectrometry revealed its molecular mass of 3137.93 Da. Sequencing of chemically modified bacteriocin identified its partial sequence: DWTCWSCLVCAACSVELL. Amino acid analysis, confirmed by (1)H-NMR, suggested cerein MRX1 to be a class II bacteriocin. This bacteriocin was remarkably hydrophobic, heat-stable and could withstand a wide range of pH. It exhibited a bactericidal mode of action against Bacillus coagulans JCM 2257(T). Cerein MRX1 was especially active against spoilage bacteria such as Bacillus subtilis and Listeria innocua (MICs in the 1 microg ml(-1) range). In contrast, lactic acid bacteria were resistant or required higher concentrations to be inhibited. CONCLUSIONS: Cerein MRX1 is similar by its N-terminal sequence to thuricin 17 recently isolated from Bacillus thuringiensis NEB17. However, the two bacteriocins are different by their molecular masses and amino acid compositions. SIGNIFICANCE AND IMPACT OF THE STUDY: Chemical stability of cerein MRX1 and its ability to inhibit a large number of undesirable bacteria may give an advantage to its food or clinical application as an antibacterial agent.  相似文献   

19.
The continuing story of class IIa bacteriocins.   总被引:2,自引:0,他引:2  
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.  相似文献   

20.
Bacterial isolates from an unchlorinated potable groundwater system and a chlorinated surface water system were screened by an agar overlay method for the ability to produce bacteriocin-like substances (BLS) inhibitory to the growth of Escherichia coli, Klebsiella sp., and Enterobacter aerogenes. The production of coliform-specific BLS by noncoliform bacteria varied with the site and date of isolation as well as the genus of the producer strain. A total of 448 bacterial isolates were screened from the chlorinated system, and 22.1% produced BLS specific for at least one of the three coliforms. In the unchlorinated system, 7.9% (n = 696) possessed this ability. Flavobacterium/Moraxella comprised 57.1% of all bacteria (from both systems) producing BLS. The possibility that BLS interfere with coliform detection in standard bacteriological water quality tests is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号