首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stored and cooked samples of pearl millet (Pennesetum typhoides), which is regularly consumed as food by the Paharia tribe in the hilly regions of Santhal Pargana, Bihar State, India, that were harvested in January 1989 were analyzed for mold flora, natural occurrence of Aspergillus flavus and A. parasiticus, and incidence and levels of aflatoxin B1. Of the 22 fungal species isolated, A. flavus and A. parasiticus were the predominant species (63.8%) during the rainy season, followed by other species of Aspergillus, Penicillium, Fusarium, Rhizopus, Helminthosporium, and Curvularia. Screening of 169 A. flavus and A. parasiticus strains showed that 59 of them were toxigenic, producing various combinations of aflatoxins B1, B2, G1, and G2. The amounts of aflatoxin B1 ranged between 4 and 30 mg/100 ml of liquid medium. Analysis of stored and cooked samples also revealed a high incidence and alarming levels of naturally produced aflatoxin B1. Forty-nine of 75 stored and 16 of 38 cooked samples contained various combinations of aflatoxins. The levels of aflatoxin B1 ranged between 17 and 2,110 ppb in stored samples and 18 and 549 ppb in cooked samples. The correlation of insect damage with A. flavus and A. parasiticus incidence and quantity of aflatoxin B1 was found to be insignificant.  相似文献   

2.
AIMS: To find a supplemental ingredient that can be added to routinely used growth media to increase conidial production and decrease aflatoxin biosynthesis in small sclerotial (S strain) isolates of Aspergillus flavus. METHODS AND RESULTS: Molasses was added to three commonly used culture media: coconut agar (CAM), potato dextrose agar (PDA), and vegetable juice agar (V8) and production of conidia, sclerotia, and aflatoxins by A. flavus isolate CA43 was determined. The effect of nitrogen sources in molasses medium (MM) on production of conidia, sclerotia and aflatoxins was examined. Water activity and medium pH were also measured. Conidia harvested from agar plates were counted using a haemocytometer. Sclerotia were weighed after drying at 45 degrees C for 5 days. Aflatoxins B(1) and B(2) were quantified by high-performance liquid chromatography. Addition of molasses to the media did not change water activity or the pH significantly. Supplementing CAM and PDA with molasses increased conidial production and decreased aflatoxins. Two-fold increased yield of conidia was found on MM, which, like V8, did not support aflatoxin production. Adding ammonium to MM significantly increased the production of sclerotia and aflatoxins, but slightly decreased conidial production. Adding urea to MM significantly increased the production of conidia, sclerotia and aflatoxins. CONCLUSIONS: Molasses stimulated conidial production and inhibited aflatoxin production. Its effect on sclerotial production was medium-dependent. Water activity and medium pH were not related to changes in conidial, sclerotial or aflatoxin production. Medium containing molasses alone or molasses plus V8 juice were ideal for conidial production by S strain A. flavus. SIGNIFICANCE AND IMPACT OF THE STUDY: Insight into molecular events associated with the utilization of molasses may help to elucidate the mechanism(s) that decreases aflatoxin biosynthesis. Targeting genetic parameters in S strain A. flavus isolates may reduce aflatoxin contamination of crops by reducing the survival and toxigenicity of these strains.  相似文献   

3.
Stored and cooked samples of pearl millet (Pennesetum typhoides), which is regularly consumed as food by the Paharia tribe in the hilly regions of Santhal Pargana, Bihar State, India, that were harvested in January 1989 were analyzed for mold flora, natural occurrence of Aspergillus flavus and A. parasiticus, and incidence and levels of aflatoxin B1. Of the 22 fungal species isolated, A. flavus and A. parasiticus were the predominant species (63.8%) during the rainy season, followed by other species of Aspergillus, Penicillium, Fusarium, Rhizopus, Helminthosporium, and Curvularia. Screening of 169 A. flavus and A. parasiticus strains showed that 59 of them were toxigenic, producing various combinations of aflatoxins B1, B2, G1, and G2. The amounts of aflatoxin B1 ranged between 4 and 30 mg/100 ml of liquid medium. Analysis of stored and cooked samples also revealed a high incidence and alarming levels of naturally produced aflatoxin B1. Forty-nine of 75 stored and 16 of 38 cooked samples contained various combinations of aflatoxins. The levels of aflatoxin B1 ranged between 17 and 2,110 ppb in stored samples and 18 and 549 ppb in cooked samples. The correlation of insect damage with A. flavus and A. parasiticus incidence and quantity of aflatoxin B1 was found to be insignificant.  相似文献   

4.
This research examines the distribution of aflatoxins among conidia and sclerotia of toxigenic strains of Aspergillus flavus Link and Aspergillus parasiticus Speare cultured on Czapek agar (21 days, 28 degrees C). Total aflatoxin levels in conidia and sclerotia varied considerably both within (intrafungal) and among strains. Aspergillus flavus NRRL 6554 accumulated the highest levels of aflatoxin (conidia: B1, 84000 ppb; G1, 566000 ppb; sclerotia: B1, 135000 ppb; G1, 968000 ppb). Substantial aflatoxin levels in conidia could place at risk those agricultural workers exposed to dust containing large numbers of A. flavus conidia. Cellular ratios of aflatoxin B1 to aflatoxin G1 were nearly identical in conidia and sclerotia even though levels of total aflatoxins in these propagule types may have differed greatly. Aflatoxin G1 was detected in sclerotia of all A. flavus strains but in the conidia of only one strain. Each of the A. parasiticus strains examined accumulated aflatoxin G1 in both sclerotia and conidia. These results are examined in the context of current evolutionary theory predicting an increase in the chemical defense systems of fungal sclerotia, propagules critical to the survival of these organisms.  相似文献   

5.
Thirty-one fungal species, mostly toxigenic and belonging to 11 genera were isolated from corn, corn cake and corn roll snack samples.Aspergillus, Penicillum andFusarium accounted for 10, 6 and 3 of the species and altogether, they constituted 90, 94 and 88 percent of the total fungi in corn, corn cake and corn roll snack respectively. Mycotoxins (aflatoxins and ochratoxin A) were detected in 45, 80 and 12 percent while the means and ranges of the total aflatoxins recorded were: 200(25–770 ppb); 233(15–1070 ppb) and 55(10–160 ppb) for corn, corn cake and corn roll snack samples respectively. Ochratoxin A was detected at toxicologically significant levels in only 15 percent of the corn cake samples analyzed. All the strains ofAspergillus flavus andA. ochraceus tested produced aflatoxin B and ochratoxin A, respectively, when they were cultured on each of the three substrates. In each case, substantial quantities of the toxins were produced from 25 to 35°C with the peak level recorded at 30°C. Toxin production was detected only in substrates with 15 percent moisture content and above; reaching the maximum at 25 or 30 percent moisture level. No substantial differences in the amount of toxins were elaborated with further increase in substrates' moisture content. Of the three substrates, corn cake was the most suitable for aflatoxin B production while they were all equally suitable for the elaboration of ochratoxin A.  相似文献   

6.
7.
Biosynthetic relationship among aflatoxins B1, B2, M1, and M2.   总被引:7,自引:6,他引:1       下载免费PDF全文
Aflatoxins are a family of toxic, acetate-derived decaketides that arise biosynthetically through polyhydroxyanthraquinone intermediates. Most studies have assumed that aflatoxin B1 is the biosynthetic precursor of the other aflatoxins. We used a strain of Aspergillus flavus which accumulates aflatoxin B2 to investigate the later stages of aflatoxin biosynthesis. This strain produced aflatoxins B2 and M2 but no detectable aflatoxin B1 when grown over 12 days in a low-salt, defined growth medium containing asparagine. Addition of dichlorvos to this growth medium inhibited aflatoxin production with concomitant accumulation of versiconal hemiacetal acetate. When mycelial pellets were grown for 24, 48, and 72 h in growth medium and then transferred to a replacement medium, only aflatoxin B2 and M2 were recovered after 96 h of incubation. Addition of sterigmatocystin to the replacement medium led to the recovery of higher levels of aflatoxins B2 and M2 than were detected in control cultures, as well as to the formation of aflatoxins B1 and M1 and O-methylsterigmatocystin. These results support the hypothesis that aflatoxins B1 and B2 can arise independently via a branched pathway.  相似文献   

8.
Sharma YP  Sumbali G 《Mycopathologia》1999,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1 and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 micrograms/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore, monitoring of aflatoxins in dry fruit slices of quinces is recommended for this region.  相似文献   

9.
Aflatoxins are a family of toxic, acetate-derived decaketides that arise biosynthetically through polyhydroxyanthraquinone intermediates. Most studies have assumed that aflatoxin B1 is the biosynthetic precursor of the other aflatoxins. We used a strain of Aspergillus flavus which accumulates aflatoxin B2 to investigate the later stages of aflatoxin biosynthesis. This strain produced aflatoxins B2 and M2 but no detectable aflatoxin B1 when grown over 12 days in a low-salt, defined growth medium containing asparagine. Addition of dichlorvos to this growth medium inhibited aflatoxin production with concomitant accumulation of versiconal hemiacetal acetate. When mycelial pellets were grown for 24, 48, and 72 h in growth medium and then transferred to a replacement medium, only aflatoxin B2 and M2 were recovered after 96 h of incubation. Addition of sterigmatocystin to the replacement medium led to the recovery of higher levels of aflatoxins B2 and M2 than were detected in control cultures, as well as to the formation of aflatoxins B1 and M1 and O-methylsterigmatocystin. These results support the hypothesis that aflatoxins B1 and B2 can arise independently via a branched pathway.  相似文献   

10.
Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded as a synonym of A. nomius, while A. toxicarius resembles A. parasiticus but differs with at least three base pair differences. At least 10 Aspergillus species can be recognized which are able to biosynthesize aflatoxins, and they are placed in three very different clades.  相似文献   

11.
Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2.  相似文献   

12.
Aflatoxin Production in Meats. I. Stored Meats   总被引:2,自引:2,他引:0       下载免费PDF全文
Aflatoxins were produced on fresh beef (in which bacterial spoilage was delayed with antibiotics), ham, and bacon inoculated with toxinogenic fungi and stored at 15, 20 and 30 C. Meats stored at 10 C were spoiled by bacteria and yeast before detectable levels of aflatoxins were produced. High levels of aflatoxins were formed in meats stored at 20 C; one sample supported the production of 630 mug of aflatoxins per g of meat, the major portion (580 mug) of which was aflatoxin G(1). Meats stored below 30 C developed higher levels of aflatoxin G(1) than B(1), but at 30 C Aspergillus flavus produced equal amounts of B(1) and G(1), whereas A. parasiticus continued to produce more G(1) than B(1).  相似文献   

13.
Five strains of Aspergillus flavus lacking the ability to produce aflatoxins were examined in greenhouse tests for the ability to prevent a toxigenic strain from contaminating developing cottonseed with aflatoxins. All atoxigenic strains reduced contamination when inoculated into developing bolls 24 h prior to the toxigenic strain. However, only one strain, AF36, was highly effective when inoculated simultaneously with the toxigenic strain. All five strains were able to inhibit aflatoxin production by the toxigenic strain in liquid fermentation. Thus, in vitro activity did not predict the ability of an atoxigenic strain to prevent contamination of developing bolls. Therefore, strain selection for competitive exclusion to prevent aflatoxin contamination should include evaluation of efficacy in developing crops prior to field release. Atoxigenic strains were also characterized by the ability to convert several aflatoxin precursors into aflatoxin B1. Four atoxigenic strains failed to convert any of the aflatoxin biosynthetic precursors to aflatoxins. However, the strain (AF36) most effective in preventing aflatoxin contamination in developing bolls converted all tested precursors into aflatoxin B1, indicating that this strain made enzymes in the aflatoxin biosynthetic pathway.  相似文献   

14.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari.  相似文献   

15.
Aspergillus niger, a mold commonly associated with Aspergillus flavus in damaged corn, interferes with the production of aflatoxin when grown with A. flavus on autoclaved corn. The pH of corn-meal disks was adjusted using NaOH-HCl, citric acid-sodium citrate, or a water extract of A. niger fermented corn. Aflatoxin formation was completely inhibited below pH 2.8-3.0, irrespective of the system used for pH adjustment. When grown in association with A. flavus NRRL 6432 on autoclaved corn kernels, A. niger NRRL 6411 lowered substrate pH sufficiently to suppress aflatoxin production. The biodegradation of aflatoxin B1 or its conversion to aflatoxin B2a were eliminated as potential mechanisms by which A. niger reduces aflatoxin contamination. A water extract of corn kernels fermented with A. niger caused an additional inhibition of aflatoxin formation apart from the effects of pH.  相似文献   

16.
Aspergillus flavus is a common filamentous fungus that produces aflatoxins and presents a major threat to agriculture and human health. Previous phylogenetic studies of A. flavus have shown that it consists of two subgroups, called groups I and II, and morphological studies indicated that it consists of two morphological groups based on sclerotium size, called "S" and "L." The industrially important non-aflatoxin-producing fungus A. oryzae is nested within group I. Three different gene regions, including part of a gene involved in aflatoxin biosynthesis (omt12), were sequenced in 33 S and L strains of A. flavus collected from various regions around the world, along with three isolates of A. oryzae and two isolates of A. parasiticus that were used as outgroups. The production of B and G aflatoxins and cyclopiazonic acid was analyzed in the A. flavus isolates, and each isolate was identified as "S" or "L" based on sclerotium size. Phylogenetic analysis of all three genes confirmed the inference that group I and group II represent a deep divergence within A. flavus. Most group I strains produced B aflatoxins to some degree, and none produced G aflatoxins. Four of six group II strains produced both B and G aflatoxins. All group II isolates were of the "S" sclerotium phenotype, whereas group I strains consisted of both "S" and "L" isolates. Based on the omt12 gene region, phylogenetic structure in sclerotium phenotype and aflatoxin production was evident within group I. Some non-aflatoxin-producing isolates of group I had an omt12 allele that was identical to that found in isolates of A. oryzae.  相似文献   

17.
A method has been developed for the production of aflatoxin by growing Aspergillus flavus NRRL 3145 on solid substrate wheat. Optimal yields of 900 mug of aflatoxin G(1) and 900 mug of aflatoxin B(1) per g of substrate were obtained in 4 to 5 days at 28 C. A study of aflatoxin production on hulls and groats of oats and on whole oats by A. flavus strains NRRL 2999, NRRL 3000, and NRRL 3145 revealed that aflatoxin was produced on all three substrates, although production was very slight on hulls. Strain NRRL 3145 grown on solid substrate groats produced the largest amounts of aflatoxin: 580 mug of B(1) and 450 mug of G(1) per g of substrate. A densitometric method for reading thin-layer chromatographic plates is described; this is more objective and more accurate than the visual methods previously used for the determination of all four aflatoxins.  相似文献   

18.
The mold incidence, moisture contents, pH and levels of mycotoxins (aflatoxins B1, G1 and ochratoxin A) on/of/in rootstock snack (tubers ofCyperus esculentus L.) samples were monitored during a 150-day storage period. Whereas the mold incidence, moisture and mycotoxin levels increased with storage time, the pH declined during the same period. Altogether, 12 fungal species, mostly toxigenic, includingAspergillus flavus, A. parasiticus andA. ochraceus were isolated. At collection period only 3 of the 9 snack samples analysed contained trace amounts of aflatoxins. By 120th day, all the 9 samples were contaminated and the average levels were 454 and 80 ppb for aflatoxin B1 and aflatoxin G1 respectively on the 150th day. Ochratoxin A was not detected before 120th day and then only at low levels, occuring in a maximum of four samples and ranging between 10 and 80 ppb.  相似文献   

19.
Aspergillus flavus Link ex Fries was grown on cassava (Manihot utilissima) and Czapek-Dox media at 31±1°C and 90 per cent relative humidity for 8 weeks. Isolation and purification of the toxic and carcinogenic metabolic products of the mould by paper and thin layer chromatography are described. High concentrations of aflatoxin B1, B2, G1 and G2 were synthesized by the mould grown on cassava for 4 weeks. In addition to these four major toxic components, 9 other fluorescent materials were observed on the chromatograms of crude products from cassava. It is concluded that the high moisture, high polysaccharide and low nitrogen content of cassava constitute a favourable nutritional condition at high temperatures and high relative humidity for the growth of A. flavus and the synthesis of relatively high concentrations of aflatoxin. This conld represent a serious health hazard in the moist tropics.  相似文献   

20.
In a previous experiment on the preservation of hay of high moisture content with formic acid, among other agents, aflatoxin was formed in the hay, and aflatoxin-forming strains of Aspergillus flavus were isolated from this hay after incubation in air as well as in an anaerobic jar. One isolate from the anaerobic jar was cultivated in a chemostat (Bioflo model C 30; New Brunswick Scientific Co.) in a defined medium with added B vitamins, yeast extract, or formic acid, with or without gas flow (air or nitrogen). In all cases where spore germination occurred, aflatoxin was formed in the cultures with gas flow, and small quantities of aflatoxins B1 and B2 occurred even in an atmosphere of nitrogen. Addition of B vitamins and supply of traces of air gave an approximately 15-fold increase in the amount of aflatoxin in 2 days. Carbon dioxide enrichment hindered aflatoxin formation on the defined medium even in the presence of B vitamins, but when formic acid was added, small quantities (5 to 15 micrograms/liter) were formed, and this low level remained constant until the gas flow was started.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号