首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhang Y  Xu W  Li Z  Deng XW  Wu W  Xue Y 《Plant physiology》2008,148(4):2121-2133
Guard cells, which form stoma in leaf epidermis, sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. Under drought stress, plants synthesize abscisic acid (ABA), which in turn induces a rapid closing of stoma, to prevent water loss by transpiration. However, many aspects of the molecular mechanism for ABA-mediated stomatal closure are still not understood. Here, we report a novel negative regulator of guard cell ABA signaling, DOR, in Arabidopsis (Arabidopsis thaliana). The DOR gene encodes a putative F-box protein, a member of the S-locus F-box-like family related to AhSLF-S(2) and specifically interacting with ASK14 and CUL1. A null mutation in DOR resulted in a hypersensitive ABA response of stomatal closing and a substantial increase of drought tolerance; in contrast, the transgenic plants overexpressing DOR were more susceptible to the drought stress. DOR is strongly expressed in guard cells and suppressed by ABA treatment, suggesting a negative feedback loop of DOR in ABA responses. Double-mutant analyses of dor with ABA-insensitive mutant abi1-1 showed that abi1-1 is epistatic to dor, but no apparent change of phospholipase Dalpha1 was detected between the wild type and dor. Affymetrix GeneChip analysis showed that DOR likely regulates ABA biosynthesis under drought stress. Taken together, our results demonstrate that DOR acts independent of phospholipase Dalpha1 in an ABA signaling pathway to inhibit the ABA-induced stomatal closure under drought stress.  相似文献   

3.
Abscisic acid (ABA) plays a key role in plant responses to abiotic stress, particularly drought stress. A wide number of ABA-hypersensitive mutants is known, however, only a few of them resist/avoid drought stress. In this work we have generated ABA-hypersensitive drought-avoidant mutants by simultaneous inactivation of two negative regulators of ABA signaling, i.e. the protein phosphatases type 2C (PP2Cs) ABA-INSENSITIVE1 (ABI1) and HYPERSENSITIVE TO ABA1 (HAB1). Two new recessive loss-of-function alleles of ABI1, abi1-2 and abi1-3, were identified in an Arabidopsis (Arabidopsis thaliana) T-DNA collection. These mutants showed enhanced responses to ABA both in seed and vegetative tissues, but only a limited effect on plant drought avoidance. In contrast, generation of double hab1-1 abi1-2 and hab1-1 abi1-3 mutants strongly increased plant responsiveness to ABA. Thus, both hab1-1 abi1-2 and hab1-1 abi1-3 were particularly sensitive to ABA-mediated inhibition of seed germination. Additionally, vegetative responses to ABA were reinforced in the double mutants, which showed a strong hypersensitivity to ABA in growth assays, stomatal closure, and induction of ABA-responsive genes. Transpirational water loss under drought conditions was noticeably reduced in the double mutants as compared to single parental mutants, which resulted in reduced water consumption of whole plants. Taken together, these results reveal cooperative negative regulation of ABA signaling by ABI1 and HAB1 and suggest that fine tuning of ABA signaling can be attained through combined action of PP2Cs. Finally, these results suggest that combined inactivation of specific PP2Cs involved in ABA signaling could provide an approach for improving crop performance under drought stress conditions.  相似文献   

4.
The mechanisms that balance plant growth and stress responses are poorly understood, but they appear to involve abscisic acid (ABA) signaling mediated by protein kinases. Here, to explore these mechanisms, we examined the responses of Arabidopsis thaliana protein kinase mutants to ABA treatment. We found that mutants of BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) were hypersensitive to the effects of ABA on both seed germination and primary root growth. The kinase OPEN STOMATA 1 (OST1) was more highly activated by ABA in bak1 mutant than the wild type. BAK1 was not activated by ABA treatment in the dominant negative mutant abi1-1 or the pyr1 pyl4 pyl5 pyl8 quadruple mutant, but it was more highly activated by this treatment in the abi1-2 abi2-2 hab1-1 loss-of-function triple mutant than the wild type. BAK1 phosphorylates OST1 T146 and inhibits its activity. Genetic analyses suggested that BAK1 acts at or upstream of core components in the ABA signaling pathway, including PYLs, PP2Cs, and SnRK2s, during seed germination and primary root growth. Although the upstream brassinosteroid (BR) signaling components BAK1 and BR INSENSITIVE 1 (BRI1) positively regulate ABA-induced stomatal closure, mutations affecting downstream components of BR signaling, including BRASSINOSTEROID-SIGNALING KINASEs (BSKs) and BRASSINOSTEROID-INSENSITIVE 2 (BIN2), did not affect ABA-mediated stomatal movement. Thus, our study uncovered an important role of BAK1 in negatively regulating ABA signaling during seed germination and primary root growth, but positively modulating ABA-induced stomatal closure, thus optimizing the plant growth under drought stress.  相似文献   

5.
Among approximately 480 RING domain-containing E3 Ub ligases in Arabidopsis, three, At3g46620, At5g59550, and At2g39720, have a domain-of-unknown-function (DUF) 1117 motif in their C-terminal regions. At3g46620 and At5g59550 were identified as homologous ABA- and drought-induced RING-DUF1117 genes and were designated AtRDUF1 and AtRDUF2, respectively. Single and double knock-out mutations of AtRDUFs resulted in hyposensitive phenotypes toward ABA in terms of germination rate and stomatal closure and markedly reduced tolerance to drought stress relative to wild-type plants. These results are discussed in the context that AtRDUF1 and AtRDUF2 play combinatorial, but still distinguishable, roles in ABA-mediated dehydration stress responses.  相似文献   

6.
Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.  相似文献   

7.
8.
The NFX1-LIKE1 (NFXL1) and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA) overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO(2) concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions.  相似文献   

9.
In plants, water vapour is released into the atmosphere through stomata in a process called transpiration. Abscisic acid (ABA) is a key phytohormone that facilitates stomatal closure through its action on guard cells. Recently, ATP-binding cassette (ABC) transporter genes, AtABCG25 and AtABCG40, were shown to be involved in ABA transport and responses. However, the functions of many other AtABCG family genes are still unknown. Here, we identified another ABCG gene (AtABCG22) that is required for stomatal regulation in Arabidopsis. The atabcg22 mutant plants had lower leaf temperatures and increased water loss, implying elevated transpiration through an influence on stomatal regulation. We also found that atabcg22 plants were more suspectible to drought stress than wild-type plants. AtABCG22 was expressed in aerial organs, mainly guard cells, in which the gene expression pattern was consistent with the mutant phenotypes. Using double mutants, we investigated the genetic relationships between the mutations. The atabcg22 mutation further increased the water loss of srk2e/ost1 mutants, which were defective in ABA signalling in guard cells. Also, the atabcg22 mutation enhanced the phenotype of nced3 mutants, which were defective in ABA biosynthesis. Accordingly, the additive roles of AtABCG22 functions in ABA signalling and ABA biosynthesis are discussed.  相似文献   

10.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure.  相似文献   

11.
12.
Cytosolic calcium increases were analyzed in guard cells of the Arabidopsis farnesyltransferase deletion mutant era1-2 (enhanced response to abscisic acid). At low abscisic acid (ABA) concentrations (0.1 microM), increases of guard cell cytosolic calcium and stomatal closure were activated to a greater extent in the era1-2 mutant compared with the wild type. Patch clamping of era1-2 guard cells showed enhanced ABA sensitivity of plasma membrane calcium channel currents. These data indicate that the ERA1 farnesyltransferase targets a negative regulator of ABA signaling that acts between the points of ABA perception and the activation of plasma membrane calcium influx channels. Experimental increases of cytosolic calcium showed that the activation of S-type anion currents downstream of cytosolic calcium and extracellular calcium-induced stomatal closure were unaffected in era1-2, further supporting the positioning of era1-2 upstream of cytosolic calcium in the guard cell ABA signaling cascade. Moreover, the suppression of ABA-induced calcium increases in guard cells by the dominant protein phosphatase 2C mutant abi2-1 was rescued partially in era1-2 abi2-1 double mutant guard cells, further reinforcing the notion that ERA1 functions upstream of cytosolic calcium and indicating the genetic interaction of these two mutations upstream of ABA-induced calcium increases.  相似文献   

13.
? The drought hormone abscisic acid (ABA) is widely known to produce reductions in stomatal aperture in guard cells. The second messenger cyclic guanosine 3', 5'-monophosphate (cGMP) is thought to form part of the signalling pathway by which ABA induces stomatal closure. ? We have examined the signalling events during cGMP-dependent ABA-induced stomatal closure in wild-type Arabidopsis plants and plants of the ABA-insensitive Arabidopsis mutant abi1-1. ? We show that cGMP acts downstream of hydrogen peroxide (H(2) O(2) ) and nitric oxide (NO) in the signalling pathway by which ABA induces stomatal closure. H(2) O(2) - and NO-induced increases in the cytosolic free calcium concentration ([Ca(2+) ](cyt) ) were cGMP-dependent, positioning cGMP upstream of [Ca(2+) ](cyt) , and involved the action of the type 2C protein phosphatase ABI1. Increases in cGMP were mediated through the stimulation of guanylyl cyclase by H(2) O(2) and NO. We identify nucleoside diphosphate kinase as a new cGMP target protein in Arabidopsis. ? This study positions cGMP downstream of ABA-induced changes in H(2) O(2) and NO, and upstream of increases in [Ca(2+) ](cyt) in the signalling pathway leading to stomatal closure.  相似文献   

14.
To examine the cross talk between the abscisic acid (ABA) and ethylene signal transduction pathways, signaling events during ABA-induced stomatal closure were examined in Arabidopsis (Arabidopsis thaliana) wild-type plants, in an ethylene-overproducing mutant (eto1-1), and in two ethylene-insensitive mutants (etr1-1 and ein3-1). Using isolated epidermal peels, stomata of wild-type plants were found to close within a few minutes in response to ABA, whereas stomata of the eto1-1 mutant showed a similar but less sensitive ABA response. In addition, ABA-induced stomatal closure could be inhibited by application of ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, stomata of the etr1-1 and ein3-1 mutants were able to close in response to concomitant ABA and ACC application, although to a lesser extent than in wild-type plants. Moreover, expression of the ABA-induced gene RAB18 was reduced following ACC application. These results indicate that ethylene delays stomatal closure by inhibiting the ABA signaling pathway. The same inhibitive effects of ethylene on stomatal closure were observed in ABA-irrigated plants and the plants in drought condition. Furthermore, upon drought stress, the rate of transpiration was greater in eto1-1 and wild-type plants exposed to ethylene than in untreated wild-type control plants, indicating that the inhibitive effects of ethylene on ABA-induced stomatal closure were also observed in planta.  相似文献   

15.
16.
17.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

18.
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.  相似文献   

19.
In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2. We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca(2+)](cyt)) in guard cells using a Ca(2+)-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca(2+)](cyt) elevation but not ABA-induced [Ca(2+)](cyt) elevation. The aba2-2 mutation did not affect ABA-elicited [Ca(2+)](cyt) elevation but suppressed MeJA-induced [Ca(2+)](cyt) elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μm, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号