首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

2.
Abstract The empirical study of interpopulation variation in life history and other fitness traits has been an important approach to understanding the ecology and evolution of organisms and gaining insight into possible sources of variation. We report a quantitative analysis for variations of five life history traits (larval developmental time, adult body weight, adult lifespan, age at first reproduction, total fecundity) and flight capacity among populations of Epiphyas postvittana originating from four localities in Australia and one in New Zealand. These populations were compared at two temperatures (15° and 25°C) after being maintained under uniform laboratory conditions for 1.5 generations, so that the relative role of genetic divergence and phenotypic plasticity in determining interpopulation variation could be disentangled. Genetic differentiation between populations was shown in all measured traits, with the greatest divergence occurring in developmental time, fecundity and adult body size. However, these traits were highly sensitive to changes in environmental temperatures; and furthermore, significant interactions between population and temperature occurred in all traits except for flight capacity of female moths. Thus, phenotypic plasticity may be another cause of interpopulation variation. The interpopulation variation for some measured traits was apparently related to climatic differences found where the populations originated. Individuals of the populations from the warmer climates tended to develop more slowly at immature stages, producing smaller and less fecund moths but with stronger flight capacity, in comparison to those from the cooler regions. It seems, therefore, that natural populations of E. postvittana have evolved different strategies to cope with local environmental conditions.  相似文献   

3.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

4.
We tested the hypothesis that density‐dependent competition influences the evolution of offspring size. We studied two populations of the least killifish (Heterandria formosa) that differ dramatically in population density; these populations are genetically differentiated for offspring size, and females from both populations produce larger offspring when they experience higher social densities. To look at the influences of population of origin and relative body size on competitive ability, we held females from the high‐density population at two different densities to create large and small offspring with the same genetic background. We measured the competitive ability of those offspring in mesocosms that contained either pure or mixed population treatments at either high or low density. High density increased competition, which was most evident in greatly reduced individual growth rates. Larger offspring from the high‐density population significantly delayed the onset of maturity of fish from the low‐density population. From our results, we infer that competitive conditions in nature have contributed to the evolution of genetically based interpopulation differences in offspring size as well as plasticity in offspring size in response to conspecific density.  相似文献   

5.
Interspecific hybridization between closely related mammalian species, including various species of the genus Mus, is commonly associated with abnormal growth of the placenta and hybrid foetuses, a phenomenon known as hybrid placental dysplasia (HPD). The role of HPD in speciation is anticipated but still poorly understood. Here, we studied placental and foetal growth in F1 crosses between four inbred mouse strains derived from two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus. These subspecies are in the early stage of speciation and still hybridize in nature. In accordance with the maternal–foetal genomic conflict hypothesis, we found different parental influences on placental and foetal development, with placental weight most affected by the father's body weight and foetal weight by the mother's body weight. After removing the effects of parents’ body weight, we did not find any significant differences in foetal or placental weights between intra‐subspecific and inter‐subspecific F1 crosses. Nevertheless, we found that the variability in placental weight in inter‐subspecific crosses is linked to the X chromosome, similarly as for HPD in interspecific mouse crosses. Our results suggest that maternal–foetal genomic conflict occurs in the house mouse system, but has not yet diverged sufficiently to cause abnormalities in placental and foetal growth in inter‐subspecific crosses. HPD is thus unlikely to contribute to speciation in the house mouse system. However, we cannot rule out that it might have contributed to other speciation events in the genus Mus, where differences in the levels of polyandry exist between the species.  相似文献   

6.
Abstract Both genetic differentiation and phenotypic plasticity might be expected to affect the location of geographic range limits. Co‐gradient variation (CoGV), plasticity that is congruent with genetic differentiation, may enhance performance at range margins, whereas its opposite, counter‐gradient variation (CnGV) may hinder performance. Here we report findings of reciprocal transplant experiments intended to tease apart the roles of differentiation and plasticity in producing phenotypic variation across a geographic border between two plant subspecies. Clarkia xantiana ssp. xantiana and C. xantiana ssp. parviflora are California‐endemic annuals that replace each other along a west‐east gradient of declining precipitation. We analyzed variation in floral traits, phenological traits, and vegetative morphological and developmental traits by sowing seeds of 18 populations (six of ssp. xantiana and 12 of ssp. parviflora) at three sites (one in each subspecies' exclusive range and one in the subspecies' contact zone), in two growing seasons (an exceptionally wet El Niño winter and a much drier La Niña winter). Significant genetic differences between subspecies appeared in 11 of 12 traits, and differences were of the same sign as in nature. These findings are consistent with the hypothesis that selection is responsible for subspecies differences. Geographic variation within subspecies over part of the spatial gradient mirrored between‐subspecies differences present at a larger scale. All traits showed significant plasticity in response to spatial and temporal environmental variation. Plasticity patterns ranged from spatial and temporal CoGV (e.g., in node of first flower), to spatial CnGV (e.g., in flowering time), to patterns that were neither CoGV nor CnGV (the majority of traits). Instances of CoGV may reflect adaptive plasticity and may serve to increase performance under year‐to‐year environmental variation and at sites near the subspecies border. However, the presence of spatial CnGV in some critical traits suggests that subspecies ranges may also be constrained by patterns of plasticity.  相似文献   

7.
Reproducing females can allocate energy between the production of eggs or offspring of different size or number, both of which can strongly influence fitness. The physical capacity to store developing offspring imposes constraints on maximum clutch volume, but individual females and populations can trade off whether more or fewer eggs or offspring are produced, and their relative sizes. Harsh environments are likely to select for larger egg or offspring size, and many vertebrate populations compensate for this reproductive investment through an increase in female body size. We report a different trade‐off in a frog endemic to the Tibetan Plateau, Rana kukunoris. Females living at higher altitudes (n = 11 populations, 2000–3500 m) produce larger eggs, but without a concomitant increase in female body size or clutch size. The reduced diel and seasonal activity at high altitudes may impose constraints on the maximum body size of adult frogs, by limiting the opportunity for energy accumulation. Simultaneously, producing larger eggs likely helps to increase the rate of embryonic development, causing tadpoles to hatch earlier. The gelatinous matrix surrounding eggs, more of which is produced by large females, may help buffer developing embryos from temperature fluctuations or offer protection from ultraviolet radiation. High‐altitude frogs on the Tibetan Plateau employ a reproductive strategy that favours large egg size independent of body size, which is unusual in amphibians. The harsh and unpredictable environmental conditions at high altitudes can thus impose strong and opposing selection pressures on adult and embryonic life stages, both of which can simultaneously influence fitness.  相似文献   

8.
Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole‐genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region—the previously described subspecies (“fulvescens”) from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.  相似文献   

9.
Maternal and environmental factors are important sources of phenotypic variation because both factors influence offspring traits in ways that impact offspring and maternal fitness. The present study explored the effects of maternal factors (maternal body size, egg size, yolk‐steroid allocation, and oviposition‐site choice) and seasonally‐variable environmental factors on offspring phenotypes and sex ratios in a multi‐clutching lizard with environmental sex determination (Amphibolurus muricatus). Maternal identity had strong effects on offspring morphology, but the nature of maternal effects differed among successive clutches produced by females throughout the reproductive season (i.e. maternal identity by environment interactions). The among‐female and among‐clutch variation in offspring traits (including sex ratios) was not mediated through maternal body size, egg size, or variation in yolk steroid hormones. This lack of nongenetic maternal effects suggests that phenotypic variation may be generated by gene by environment interactions. These results demonstrate a significant genetic component to variation in offspring phenotypes, including sex ratios, even in species with environmental sex determination. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 256–266.  相似文献   

10.
Scheel BM  Hausdorf B 《Molecular ecology》2012,21(15):3794-3808
Two groups of subspecies of the door snail Charpentieria itala are distributed in a mosaic pattern in the Southern Alps. Some subspecies that morphologically resemble Charpentieria stenzii occur at exposed rocks at higher altitudes, whereas other subspecies live on more humid rocks at lower altitudes. This pattern can be explained by two alternative hypotheses. Either the stenzii‐like or ‘stenzioid’ subspecies have a common origin and represent relicts of an early colonization wave that survived the ice ages in isolated mountain refuges within the Alps, or the geographically isolated stenzioid subspecies evolved through parallel adaptation of C. itala populations to life on exposed rocks. In this study, the first hypothesis could be supported by several lines of evidence. Analyses of amplified fragment length polymorphisms (AFLP) data indicated a common origin of the stenzioid subspecies of the Bergamasque Prealps and of the stenzioid subspecies of the Brescia and Garda Prealps, whereas an outlier analysis detected only few AFLP markers that might be under selection. High 16S rDNA distances between subspecies suggest that the divergence of the subspecies predates at least most of the glacials. The occurrences of the stenzioid subspecies are concentrated in mountain areas that were not glaciated during the Last Glacial Maximum. The genetic differentiation and the isolated distribution areas of the stenzioid subspecies indicate that they survived in five separate mountain refuges in the Bergamasque, Brescia and Garda Prealps. In addition, the clustering of the Charpentieria itala latestriata populations from different valleys indicates a low‐altitude refuge.  相似文献   

11.
We genetically characterize an unusual hybrid incompatibility phenotype manifest in F1 offspring of crosses between two populations of Tribolium castaneum. Hybrid larvae cease development at the third larval instar, persisting as ‘perpetually immature larvae’ thereafter. Although unable to produce viable adult hybrid offspring with one another, each population produces abundant, fertile hybrids with other populations, indicating a recent origin of the incompatibility and facilitating genetic studies. We mapped the paternal component of the hybrid phenotype to a single region, which exhibits two characteristics common to hybrid incompatibility: marker transmission ratio distortion within crosses and elevated genetic divergence between populations. The incompatible variation and an elevation in between‐population genetic divergence is associated with a region containing the T. castaneum ecdysone receptor homologue, a major regulatory switch, controlling larval moults, pupation and metamorphosis. This contributes to understanding the genetics of speciation in the Coleoptera, one of the most speciose of all arthropod taxa.  相似文献   

12.
1. Maternal effects have long been known to influence phenotypic plasticity in rotifers. Females in Brachionus calyciflorus and several other species produce long‐spined offspring when the predatory rotifer Asplanchna is present; B. calyciflorus also develops short spines when food concentrations are low. These spines protect against predation and decrease food threshold concentrations. 2. Some strains of B. calyciflorus develop long spines even in the absence of Asplanchna and other environmental stimuli. We demonstrate in this study that spine length in such cases is dependent on the age of the mother. 3. In strains from Florida and Georgia, offspring spine length increased significantly with birth order, sometimes to lengths formerly observed only in the presence of Asplanchna. Significant variation in this trait was found among and within clones of a strain. Offspring body size also increased with maternal age. This is the first time maternal age has been shown to affect rotifer morphology. 4. These birth‐order effects may have important ecological implications and explain phenotypic plasticity and polymorphism in body size and spine length in populations when predators are absent and food concentrations are high. They may be a bet‐hedging mechanism to assure adaptation to rapid changes in predation pressure or food conditions.  相似文献   

13.
Interpopulation differences in body size are of common occurrence in vertebrates, but the relative importance of genetic, maternal, and environmental effects as causes of observed differentiation have seldom been assessed in the wild. Gigantism in pond nine‐spined sticklebacks (Pungitius pungitius Linnaeus, 1758) has been repeatedly observed, but the quantitative genetic basis of population divergence in size has remained unstudied. We conducted a common garden experiment – using ‘pure’ and reciprocal crosses between two populations (‘giant’ pond versus ‘normal’ marine) – to test for the relative importance of additive genetic, non‐additive genetic, and maternal effects on body size after 11 months of growth in the laboratory. We found that body size difference between the two populations in laboratory conditions owed mainly to additive genetic effects, and only to a minor degree to maternal effects. Furthermore, the weak maternal effects were seen only in the offspring of ‘giant’ mothers, and appeared to be mediated through differences in egg size. Thus, the results suggest that gigantism in pond populations of P. pungitius is based on the effects of additively acting genes, rather than to direct environmental induction, or maternal or non‐additive gene action. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 521–528.  相似文献   

14.
During the process of ecological speciation, reproductive isolation results from divergent natural selection and leads to a positive correlation between genetic divergence and adaptive phenotypic divergence, that is, isolation by adaptation (IBA). In natural populations, phenotypic differentiation is often autocorrelated with geographic distance, making IBA difficult to distinguish from the neutral expectation of isolation by distance (IBD). We examined these two alternatives in a dramatic case of clinal phenotypic variation in an Andean songbird, the Line‐cheeked Spinetail (Cranioleuca antisiensis). At its geographic extremes, this species shows a near threefold difference in body mass (11.5 to 31.0 g) with marked plumage differences. We analysed phenotypic, environmental and genetic data (5,154 SNPs) from 172 individuals and 19 populations sampled along its linear distribution in the Andes. We found that body mass was tightly correlated with environmental temperature, consistent with local adaptation as per Bergmann's rule. Using a PSTFST analysis, we found additional support for natural selection driving body mass differentiation, but these results could also be explained by environment‐mediated phenotypic plasticity. When we assessed the relative support for patterns of IBA and IBD using variance partitioning, we found that IBD was the best explanation for genetic differentiation along the cline. Adaptive phenotypic or environmental divergence can reduce gene flow, a pattern interpreted as evidence of ecological speciation's role in diversification. Our results provide a counterexample to this interpretation. Despite conditions conducive to ecological speciation, our results suggest that dramatic size and environmental differentiation within C. antisiensis are not limiting gene flow.  相似文献   

15.
W. U. Blanckenhorn 《Oecologia》1997,109(3):342-352
 Field phenologies of high- (ca. 1500 m) and low- (ca. 500 m) altitude populations of the two most common European species of dung flies, Scathophaga stercoraria and Sepsis cynipsea, differ quite markedly due to differences in climate. To differentiate genetic adaptation due to natural selection and phenotypic plasticity, I compared standard life history characters of pairs of high- and low-altitude populations from three disjunctive sites in Switzerland in a laboratory experiment. The F1 rearing environment did not affect any of the variables of the F2 generation with which all experiments were conducted; hence, there were no carry-over or maternal effects. In Sc. stercoraria, high-altitude individuals were smaller but laid larger eggs; the latter may be advantageous in the more extreme (i.e. more variable and less predictable) high-altitude climate. Higher rearing temperature strongly decreased development time, body size and the size difference between males and females (males are larger), produced female-biased sex ratios and led to suboptimal adult emergence rates. Several of these variables also varied among the three sites, producing some interactions complicating the patterns. In Se. cynipsea, high-altitude females were marginally smaller, less long-lived and laid fewer clutches. Higher rearing temperature strongly decreased development time and body size but tended to increase the size difference between males and females (males are smaller); it also increased clutch size but decreased physiological longevity. Again, interpretation is complicated by variation across sites and some significant interactions. Overall, genetic adaptation to high-altitude conditions appears weak, probably prevented by substantial gene flow, and may be swamped by the effects of other geographic variables among populations. In contrast, phenotypic plasticity is extensive. This may be due to selection of flexible, multi-purpose genotypes. The results suggest that differences in season length between high- and low-altitude locations alone do not explain well the patterns of variation in phenology and body size. Received: 21 March 1996 / Accepted: 1 September 1996  相似文献   

16.
Identifying the contribution of pre‐ and postzygotic barriers to gene flow is a key goal of speciation research. The widespread dung fly species Sepsis cynipsea and Sepsis neocynipsea offer great potential for studying the speciation process over a range of opportunities for gene exchange within and across sister species (cross‐continental allopatry, continental parapatry and sympatry). We examined the role of postcopulatory isolating barriers by comparing female fecundity and egg‐to‐adult viability of F1 and F2 hybrids, as well as backcrosses of F1 hybrids with the parental species, via replicated crosses of sym‐, para‐ and allopatric populations. Egg‐to‐adult viability was strongly but not totally suppressed in hybrids, and offspring production approached nil in the F2 generation (hybrid breakdown), indicating yet unspecified intrinsic incompatibilities. Viable F1 hybrid offspring showed almost absolute male (the heterogametic sex) sterility while females remained largely fertile, in accordance with Haldane's rule. Hybridization between the two species in European areas of sympatry (Swiss Alps) indicated only minor reinforcement based on fecundity traits. Crossing geographically isolated European and North American S. neocynipsea showed similar albeit weaker isolating barriers that are most easily explained by random genetic drift. We conclude that in this system with a biogeographic continuum of reproductive barriers, speciation is mediated primarily by genetic drift following dispersal of flies over a wide (allopatric) geographic range, with some role of natural or sexual selection in incidental or direct reinforcement of incompatibility mechanisms in areas of European sympatry. S(ubs)pecies status of continental S. neocynipsea appears warranted.  相似文献   

17.
Are rates of evolution and speciation fastest where diversity is greatest – the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra‐tropical regions. In this issue of Molecular Ecology, Botero et al. ( 2014 ) test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes.  相似文献   

18.
Hybridization between genetically divergent populations is an important evolutionary process, with an outcome that is difficult to predict. We used controlled crosses and freely mating hybrid swarms, followed for up to 30 generations, to examine the morphological and fitness consequences of interpopulation hybridization in the copepod Tigriopus californicus. Patterns of fitness in two generations of controlled crosses were partly predictive of long‐term trajectories in hybrid swarms. For one pair of populations, controlled crosses revealed neutral or beneficial effects of hybridization after the F1 generation, and hybrid swarm fitness almost always equalled or exceeded that of the midparent. For a second pair, controlled crosses showed F2 hybrid breakdown, but increased fitness in backcrosses, and hybrid swarm fitness deviated both above and below that of the parentals. Nevertheless, individual swarm replicates exhibited different fitness trajectories over time that were not related in a simple manner to their hybrid genetic composition, and fixation of fitter hybrid phenotypes was not observed. Hybridization did not increase overall morphological variation, and underlying genetic changes may have been masked by phenotypic plasticity. Nevertheless, one type of hybrid swarm exhibited a repeatable pattern of transgressively large eggsacs, indicating a positive effect of hybridization on individual fecundity. Additionally, both parental and hybrid swarms exhibited common phenotypic trends over time, indicating common selective pressures in the laboratory environment. Our results suggest that, in a system where much work has focused on F2 hybrid breakdown, the long‐term fitness consequences of interpopulation hybridization are surprisingly benign.  相似文献   

19.
Adaptive divergence in response to variable habitats, climates, and altitude is often accentuated along elevation gradients. We investigate phenotypic evolution in body size and coloration in the western fence lizard (Sceloporus occidentalis Baird & Girard, 1852) across elevation gradients in Yosemite National Park, California, situated in the Sierra Nevada mountains of Western North America. High‐elevation populations occurring above 2100 m a.s.l. are recognized as a separate subspecies (Sceloporus occidentalis taylori Camp, 1916), with a distinctive phenotype characterized by a large body size and extensive blue ventral pigmentation. We sampled S. occidentalis from across elevation gradients in Yosemite National Park, California, and collected phenotypic data (body size and ventral coloration measurements; 410 specimens) and mitochondrial DNA sequence data (complete NADH1 gene; 969 bp, 181 specimens) to infer phylogenetic relationships, and examine the genetic and phenotypic diversity among populations. Populations of S. occidentalis in Yosemite National Park follow Bergmann's rule and exhibit larger body sizes in colder, high‐elevation environments. The high‐elevation subspecies S. o. taylori is not monophyletic, and the mitochondrial DNA genealogy supports a model of convergent phenotypic evolution among high‐elevation populations belonging to different river drainages. The hypothesis that separate populations of S. occidentalis expanded up river drainages after the recession of glaciers is supported by population demographic analyses, and suggest that Bergmann's clines can evolve rapidly along elevation gradients. The distinctive high‐elevation phenotype that is attributable to S. o. taylori has evolved independently several times, and includes adaptive phenotypic changes associated with increases in body size and ventral coloration. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 630–641.  相似文献   

20.
GILL  Ayesha E. 《Genetica》1984,52(1):105-117
Summary A partial reproductive barrier found between subspecies of the California vole indicates that there may be obstacles to free interbreeding within this species in nature. Both the reduced fertility between subspecies and the sterility of hybrid males found in laboratory crosses would be obstacles to gene exchange between contiguous subspecies populations. Combative behavior engaged in by approximately half of the mixed subspecies pairs in the laboratory indicate that there might also be behavioral constraints to their breeding. Substantial differentiation has already occurred between M.c. californicus and stephensi in some of the faster evolving structural gene loci coding for enzymes not involved in glucose metabolism. Due to significant differences in body size, skull characteristics, and organ weights, the two subspecies are clearly distinguishable on the basis of these morphophysiological characters at this stage of reproductive isolation. Thus, there is good reason to believe that these populations of the California vole are diverging to the species level. I am continuing the investigation of the intraspecific divergence with a comparative study of the geographically intervening subspecies M.c. sanctidiegi, to determine its interfertility with californicus and stephensi. The speciation process has been studied extensively in drosophilids (Ayala, 1975) and there have been many studies of geographical variation and speciation in the genus Peromyscus (Dice, 1940, 1968), but it is not likely that the same model of speciation will apply equally to all organisms (White, 1973; Dobzhansky, 1972). The California vole promises to provide another important case study of the speciation process and of the nature of genetic changes involved in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号