首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y(11). When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y(11). Activity can be blocked by compounds known to act as antagonists of mammalian P2Y(11). Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y(11). Xenopus P2Y(11) is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system.  相似文献   

2.
Food intake regulation in rodents: Y5 or Y1 NPY receptors or both?   总被引:3,自引:0,他引:3  
Neuropeptide Y (NPY), one of the most abundant peptides in rat and human brains, appears to act in the hypothalamus to stimulate feeding. It was first suggested that the NPY Y1 receptor (Y1R) was involved in feeding stimulated by NPY. More recently a novel NPY receptor subtype (Y5R) was identified in rat and human as the NPY feeding receptor subtype. There is, however, no absolute consensus since selective Y1R antagonists also antagonize NPY-induced hyperphagia. Nevertheless, new anti-obesity drugs may emerge from further pharmacological characterization of the NPY receptors and their antagonists. A large panel of Y1R and Y5R antagonists (such as CGP71683A, BIBO3304, BIBP3226, 1229U91, and SYNAPTIC and BANYU derivatives but also patentable in-house-synthesized compounds) have been evaluated through in vitro and in vivo tests in an attempt to establish a predictive relationship between the binding selectivity for human receptors, the potency in isolated organs assays, and the inhibitory effect on food intake in both normal and obese hyperphagic rodents. Although these results do not allow one to conclude on the implication of a single receptor subtype at the molecular level, this approach is crucial for the design of novel NPY receptor antagonists with potential use as anti-obesity drugs and for evaluation of their possible adverse peripheral side effects, such as hypotension.  相似文献   

3.
4.
Platelet plays essential roles in hemostasis and its dysregulation can lead to arterial thrombosis. P2Y12 is an important platelet membrane adenosine diphosphate receptor, and its antagonists have been widely developed as anti-coagulation agents. The current P2Y12 inhibitors available in clinical practice have not fully achieved satisfactory anti-thrombotic effects, leaving room for further improvement. To identify new chemical compounds as potential anti-coagulation inhibitors, we constructed a three-dimensional structure model of human P2Y12 by homology modeling based on the recently reported G-protein coupled receptor Meleagris gallopavo β1 adrenergic receptor. Virtual screening of the modeled P2Y12 against three subsets of small molecules from the ZINC database, namely lead-like, fragment-like, and drug-like, identified a number of compounds that might have high binding affinity to P2Y12. Detailed analyses of the top three compounds from each subset with the highest scores indicated that all of these compounds beard a hydrophobic bulk supplemented with a few polar atoms which bound at the ligand binding site via largely hydrophobic interactions with the receptor. This study not only provides a structure model of P2Y12 for rational design of anti-platelet inhibitors, but also identifies some potential chemicals for further development.  相似文献   

5.
A previous study around adenine nucleotides afforded the reference N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (1a, MRS 2179) as a selective human P2Y(1) receptor antagonist (pA(2)=6.55+/-0.05) with antithrombotic properties. In the present paper, we have synthesized and tested in vitro various 2-substituted derivatives with the goal of exploring the 2-position binding region and developing more potent P2Y(1) receptor antagonists. Thus, we have adopted a novel and versatile chemical pathway using a palladium-catalyzed cross-coupling reaction with the 2-iodinated derivative 7 as a common intermediate for a very efficient synthesis of the 2-alkyl-N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate nucleotides 1e-i. The biological activity was evaluated through the ability of compounds to inhibit ADP-induced platelet aggregation, intracellular calcium rise and to displace the specific binding of [(33)P]2-MeSADP. 2-Ethyl and 2-propyl groups appeared to be tolerated, whereas a bulky group or a C(3) linear substituent dramatically decreased potency of antagonists. The 2-ethynyl derivative 1h (pA(2)=7.54+/-0.10) was significantly more potent (10-fold) as an antagonist when compared to the reference 1a, revealing a potential electronic interaction highly favorable between triple bond orbitals and the P2Y(1) receptor at this position.  相似文献   

6.
5-HT(7) receptor antagonists generated antidepressant-like effects in animal model and the involvement of the 5-HT(7) receptor in other pathophysiological mechanisms such as thermoregulation, learning and memory, and sleep has been highlighted by various studies. As one of our efforts to discover a new type of 5-HT(7) receptor antagonists, we here report on the synthesis and binding affinities to the 5-HT(7) receptor of the quinazolinone library 1, which was designed with various substituents (X, Y, R(1), and R(2)) on the aromatic rings and different carbon chain length. Total 85 compounds of the quinazolinone library 1 were synthesized and the binding affinities of all the synthesized compounds were obtained by radioligand binding assay for the 5-HT(7) receptor. Among the 85 compounds, 24 compounds show very good binding affinities with IC(50) values below 100 nM. Mainly the compounds with IC(50) values below 100 nM have o-OMe or o-OEt as R(2) substituent. The compound with the best binding affinity is 1-68 of which the IC(50) value is 12 nM. In in vivo animal study, some synthesized compounds really have the antidepressant activity in the forced swimming test in mice.  相似文献   

7.
The ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y(1) receptor has been successfully substituted with a rigid methanocarba ring system, leading to the conclusion that the North (N) ring conformation is preferred in receptor binding. Similarly, at P2Y(2) and P2Y(4) receptors, nucleotides constrained in the (N) conformation interact equipotently with the corresponding ribosides. We now have synthesized and examined as P2Y receptor ligands nucleotide analogues substituted with two novel ring systems: (1) a (N) locked-carbocyclic (cLNA) derivative containing the oxabicyclo[2.2.1]heptane ring system and (2) l-alpha-threofuranosyl derivatives. We have also compared potencies and preferred conformations of these nucleotides with the known anhydrohexitol-containing P2Y(1) receptor antagonist MRS2283. A cLNA bisphosphate derivative MRS2584 21 displayed a K(i) value of 22.5 nM in binding to the human P2Y(1) receptor, and antagonized the stimulation of PLC by the potent P2Y(1) receptor agonist 2-methylthio-ADP (30 nM) with an IC(50) of 650 nM. The parent cLNA nucleoside bound only weakly to an adenosine receptor (A(3)). Thus, this ring system afforded some P2Y receptor selectivity. A l-alpha-threofuranosyl bisphosphate derivative 9 displayed an IC(50) of 15.3 microM for inhibition of 2-methylthio-ADP-stimulated PLC activity. l-alpha-Threofuranosyl-UTP 13 was a P2Y receptor agonist with a preference for P2Y(2) (EC(50)=9.9 microM) versus P2Y(4) receptors. The P2Y(1) receptor binding modes, including rotational angles, were estimated using molecular modeling and receptor docking.  相似文献   

8.
AMP and adenosine are found in all cell types and can be released by cells or created extracellularly from the breakdown of ATP and ADP. We have identified an orphan G protein-coupled receptor with homology to the P2Y family of nucleotide receptors that can respond to both AMP and adenosine. Based on its ability to functionally bind the nucleotide AMP, we have named it P2Y15. Upon stimulation, P2Y15 induces both Ca2+ mobilization and cyclic AMP generation, suggesting coupling to at least two different G proteins. It is highly expressed in mast cells and is found predominantly in the tissues of the respiratory tract and kidneys, which are known to be affected by AMP, adenosine, and adenosine antagonists. Until now, the effects of AMP have been thought to depend on its dephosphorylation to adenosine but we demonstrate here that P2Y15 is a bona fide AMP receptor by showing that it binds [(32)P]AMP. Because AMP and adenosine have bronchoconstrictive effects that can be inhibited by theophylline, we tested whether theophylline and other adenosine receptor antagonists can block P2Y15. We found inhibition at a theophylline concentration well within the therapeutic dose range, indicating that P2Y15 may be a clinically important target of this drug.  相似文献   

9.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

10.
Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets.  相似文献   

11.
The involvement of the P2 receptor in the activation of ERK induced by a short transient fluid flow stimulation in MC3T3-E1 osteoblasts was examined in the current study. The ERK activation induced by this transient fluid flow stimulation was followed by an increase in c-fos mRNA expression. Suramin, a non-selective P2 receptor antagonist, and two different P2X7 receptor (P2X7R) antagonists, ATP analogue (oxidized ATP) and dye (Brilliant blue G), inhibited fluid flow-induced ERK activation. However, the P2Y receptor pathway inhibitor U73122 did not abolish this ERK activation. The P2X7R agonist 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) significantly increased ERK activation and this activation could be completely inhibited by oxidized ATP and Brilliant blue G. Our results suggest that P2X7R is a highly sensitive P2 receptor for fluid flow-induced ERK activation in osteoblasts.  相似文献   

12.
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.  相似文献   

13.
14.
The P2Y(1) and P2Y(12) purinergic receptors are responsible for mediating adenosine diphosphate (ADP) dependent platelet aggregation. Evidence from P2Y(1) knockout studies as well as from nucleotide-based small molecule P2Y(1) antagonists has suggested that the antagonism of this receptor may offer a novel and effective method for the treatment of thrombotic disorders. Herein, we report the identification and optimization of a series of non-nucleotide P2Y(1) antagonists that are potent and orally bioavailable.  相似文献   

15.
A series of benzimidazoles (4) was synthesized and evaluated in vitro as potent and selective NPY Y1 receptor antagonists. Substitution of the piperidine nitrogen of 4 with appropriate R groups resulted in compounds with more than 80-fold higher affinity at the Y receptor compared to the parent compound 5 (R = H). The most potent benzimidazole in this series was 21 (Ki = 0.052 nM).  相似文献   

16.
Adenosine and ATP modulate cellular and tissue functions via specific P1 and P2 receptors, respectively. Although, in general, adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the direct interaction between P1 and P2 receptors. We recently demonstrated that the G(i/o)-coupled adenosine A1 receptor (A1R) and G(q/11)-coupled P2Y1 receptor (P2Y1R) form a heteromeric complex with a unique pharmacology in cotransfected HEK293T cells using the coimmunoprecipitation of differentially epitope-tagged forms of the receptor [Yoshioka et al. (2001) Proc. Natl. Acad. Sci. USA 98, 7617-7622], although it remained to be determined whether this hetero-oligomerization occurs in vivo. In the present study, we first demonstrated a high degree of colocalization of A1R and P2Y1R by double immunofluorescence experiments with confocal laser microscopy in rat cortex, hippocampus and cerebellum in addition to primary cultures of cortical neurons. Then, a direct association of A1R with P2Y1R was shown in coimmunoprecipitation studies using membrane extracts from these regions of rat brain. Together, these results suggest the widespread colocalization of A1R and P2Y1R in rat brain, and both receptors can exist in the same neuron, and therefore associate as hetero-oligomeric complexes in the rat brain.  相似文献   

17.
The P2Y(12) receptor is a Gi-coupled ADP receptor first described in blood platelets where it plays a central role in the complex processes of activation and aggregation. Platelet granules store important amounts of ADP which are released upon stimulation by interaction of platelets with the damaged vessel wall. Therefore, the P2Y(12) receptor is a key player in primary hemostasis and in arterial thrombosis and is an established target of antithrombotic drugs like the thienopyridine compounds ticlopidine, clopidogrel, and prasugrel or the direct, reversible antagonists ticagrelor and cangrelor. Beyond the platelet physiology and pharmacology, recent studies have revealed the expression of the P2Y(12) receptor in other hematopoietic cells including leukocyte subtypes and microglia in the central nervous system as well as in vascular smooth muscle cells. These studies indicate putative roles of the P2Y(12) receptor in inflammatory states and diseases of the brain, lung, and blood vessels. The selective role of P2Y(12) among other P2 receptors as well as the possible impact of P2Y(12) targeting drugs in these processes remain to be evaluated.  相似文献   

18.
19.
Novel benzo[a]cycloheptene derivatives were prepared for the purpose of searching new neuropeptide Y-Y5 (NPY-Y5) receptor antagonists. The structure-activity relationships are described and compound 2o (FR226928) showed the most potent affinity for Y5 receptor of all we prepared and was found to have higher potency and better selectivity for Y5 over Y1 receptor affinities when compared with the known lead compound 1.  相似文献   

20.
Extracellular nucleotides activate P2Y receptors, thereby increasing cAMP formation in Madin-Darby canine kidney (MDCK-D(1)) cells, which express P2Y(1), P2Y(2), and P2Y(11) receptors (Post, S. R., Rump, L. C., Zambon, A., Hughes, R. J., Buda, M. D., Jacobson, J. P., Kao, C. C., and Insel, P. A. (1998) J. Biol. Chem. 273, 23093-23097). The cyclooxygenase inhibitor indomethacin (indo) eliminates UTP-promoted cAMP formation (i.e. via P2Y(2) receptors) but only partially blocks ATP-promoted cAMP formation. The latter response is completely blocked by the nonselective P2Y receptor antagonist suramin. We have sought to identify the mechanism for this P2Y receptor-mediated, indo-resistant cAMP formation. The agonist rank order potencies for cAMP formation were: ADP beta S > or = MT-ADP > 2-MT-ATP > ADP, ATP, ATP gamma S > UTP, AMP, adenosine. We found a similar rank order in MDCK-D(1) cells overexpressing cloned green fluorescent protein-tagged P2Y(11) receptors, but the potency of the agonists was enhanced, consistent with a P2Y(11) receptor-mediated effect. cAMP generation by the P2Y(1) and P2Y(11) receptor agonist ADP beta S was not inhibited by several P2Y(1)-selective antagonists (PPADS, A2P5P, and MRS 2179). Forskolin synergistically enhanced cAMP generation in response to ADP beta S or PGE(2), implying that, like PGE(2), ADP beta S activates adenylyl cyclase via G(s), a conclusion supported by results showing ADP beta S and MT-ADP promoted activation of adenylyl cyclase activity in MDCK-D(1) membranes. We conclude that nucleotide-promoted, indo-resistant cAMP formation in MDCK-D(1) cells occurs via G(s)-linked P2Y(11) receptors. These data describing adenylyl cyclase activity via endogenous P2Y(11) receptors define a mechanism by which released nucleotides can increase cAMP in MDCK-D(1) and other P2Y(11)-containing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号