首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the assumption of the neutral theory of molecular evolution - that some classes of mutation have too small an effect on fitness to be affected by natural selection - seems intuitively reasonable, over the past few decades the theory has been in retreat. At least in species with large populations, even synonymous mutations in exons are not neutral. By contrast, in mammals, neutrality of these mutations is still commonly assumed. However, new evidence indicates that even some synonymous mutations are subject to constraint, often because they affect splicing and/or mRNA stability. This has implications for understanding disease, optimizing transgene design, detecting positive selection and estimating the mutation rate.  相似文献   

2.
X-linked infantile spinal muscular atrophy (XL-SMA) is an X-linked disorder presenting with the clinical features hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and infantile death. To identify the XL-SMA disease gene, we performed large-scale mutation analysis in genes located between markers DXS8080 and DXS7132 (Xp11.3–Xq11.1). This resulted in detection of three rare novel variants in exon 15 of UBE1 that segregate with disease: two missense mutations (c.1617 G→T, p.Met539Ile; c.1639 A→G, p.Ser547Gly) present each in one XL-SMA family, and one synonymous C→T substitution (c.1731 C→T, p.Asn577Asn) identified in another three unrelated families. Absence of the missense mutations was demonstrated for 3550 and absence of the synonymous mutation was shown in 7914 control X chromosomes; therefore, these results yielded statistical significant evidence for the association of the synonymous substitution and the two missense mutations with XL-SMA (p = 2.416 × 10−10, p = 0.001815). We also demonstrated that the synonymous C→T substitution leads to significant reduction of UBE1 expression and alters the methylation pattern of exon 15, implying a plausible role of this DNA element in developmental UBE1 expression in humans. Our observations indicate first that XL-SMA is part of a growing list of neurodegenerative disorders associated with defects in the ubiquitin-proteasome pathway and second that synonymous C→T transitions might have the potential to affect gene expression.  相似文献   

3.
ScopeSynonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health.PurposeThis synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics.Physiological and medical relevanceUnderstanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.  相似文献   

4.
5.
While it has often been assumed that, in humans, synonymous mutations would have no effect on fitness, let alone cause disease, this position has been questioned over the last decade. There is now considerable evidence that such mutations can, for example, disrupt splicing and interfere with miRNA binding. Two recent publications suggest involvement of additional mechanisms: modification of protein abundance most probably mediated by alteration in mRNA stability and modification of protein structure and activity, probably mediated by induction of translational pausing. These case histories put a further nail into the coffin of the assumption that synonymous mutations must be neutral.  相似文献   

6.
A fundamental goal of medical genetics is the accurate prediction of genotype–phenotype correlations. As an approach to develop more accurate in silico tools for prediction of disease-causing mutations of structural proteins, we present a gene- and disease-specific prediction tool based on a large systematic analysis of missense mutations from hemophilia A (HA) patients. Our HA-specific prediction tool, HApredictor, showed disease prediction accuracy comparable to other publicly available prediction software. In contrast to those methods, its performance is not limited to non-synonymous mutations. Given the role of synonymous mutations in disease and drug codon optimization, we propose that utilizing a gene- and disease-specific method can be highly useful to make functional predictions possible even for synonymous mutations. Incorporating computational metrics at both nucleotide and amino acid levels along with multiple protein sequence/structure alignment significantly improved the predictive performance of our tool. HApredictor is freely available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/HA_Predict/index.htm.  相似文献   

7.
Recent technological advances in sequencing have flooded the field of cancer research with knowledge about somatic mutations for many different cancer types. Most cancer genomics studies focus on mutations that alter the amino acid sequence, ignoring the potential impact of synonymous mutations. However, accumulating experimental evidence has demonstrated clear consequences for gene function, leading to a widespread recognition of the functional role of synonymous mutations and their causal connection to various diseases. Here, we review the evidence supporting the direct impact of synonymous mutations on gene function via gene splicing; mRNA stability, folding, and translation; protein folding; and miRNA‐based regulation of expression. These results highlight the functional contribution of synonymous mutations to oncogenesis and the need to further investigate their detection and prioritization for experimental assessment.  相似文献   

8.
Autosomal dominant polycystic kidney disease is the most common human monogenic disorder and is caused by mutations in the PKD1 or PKD2 genes. Most patients with the disease present mutations in PKD1, and a considerable number of these alterations are single base substitutions within the coding sequence that are usually predicted to lead to missense or synonymous mutations. There is growing evidence that some of these mutations can be detrimental by affecting the pre-mRNA splicing process. The aim of our study was to test PKD1 mutations, described as missense or synonymous in the literature or databases, for their effects on exon inclusion. Bioinformatics tools were used to select mutations with a potential effect on pre-mRNA splicing. Mutations were experimentally tested using minigene assays. Exons and adjacent intronic sequences were PCR-amplified and cloned in the splicing reporter minigene, and selected mutations were introduced by site-directed mutagenesis. Minigenes were transfected into kidney derived cell lines. RNA from cultured cells was analyzed by RT-PCR and DNA sequencing. Analysis of thirty-three PKD1 exonic mutations revealed three mutations that induce splicing defects. The substitution c.11156G > A, previously predicted as missense mutation p.R3719Q, abolished the donor splice site of intron 38 and resulted in the incorporation of exon 38 with 117 bp of intron 38 and skipping of exon 39. Two synonymous variants, c.327A > T (p.G109G) and c.11257C > A (p.R3753R), generated strong donor splice sites within exons 3 and 39 respectively, resulting in incorporation of incomplete exons. These three nucleotide substitutions represent the first PKD1 exonic mutations that induce aberrant mRNAs. Our results strengthen the importance to evaluate the consequences of presumed missense and synonymous mutations at the mRNA level.  相似文献   

9.
J M Comeron  M Kreitman  M Aguadé 《Genetics》1999,151(1):239-249
Evolutionary analysis of codon bias in Drosophila indicates that synonymous mutations are not neutral, but rather are subject to weak selection at the translation level. Here we show that the effectiveness of natural selection on synonymous sites is strongly correlated with the rate of recombination, in accord with the nearly neutral hypothesis. This correlation, however, is apparent only in genes encoding short proteins. Long coding regions have both a lower codon bias and higher synonymous substitution rates, suggesting that they are affected less efficiently by selection. Therefore, both the length of the coding region and the recombination rate modulate codon bias. In addition, the data indicate that selection coefficients for synonymous mutations must vary by a minimum of one or two orders of magnitude. Two hypotheses are proposed to explain the relationship among the coding region length, the codon bias, and the synonymous divergence and polymorphism levels across the range of recombination rates in Drosophila. The first hypothesis is that selection coefficients on synonymous mutations are inversely related to the total length of the coding region. The second hypothesis proposes that interference among synonymous mutations reduces the efficacy of selection on these mutations. We investigated this second hypothesis by carrying out forward simulations of weakly selected mutations in model populations. These simulations show that even with realistic recombination rates, this interference, which we call the "small-scale" Hill-Robertson effect, can have a moderately strong influence on codon bias.  相似文献   

10.
We provide theoretical evidence supporting the non-neutrality of synonymous alleles by investigating the rareness of synonymous alleles in the population. We find a significantly greater number of synonymous rare alleles than conventional neutral alleles derived from noncoding regions. A permutation experiment shows that the rareness of synonymous alleles is not a byproduct of random statistical noise. We then compare the frequencies of synonymous rare alleles and common alleles in various functional contexts in which synonymous alleles are known to be involved. Subsequently, we perform logistic regression analysis to elucidate the effect size of each independent factor contributing to the rareness of synonymous alleles. Additionally, we show that changes in optimality caused by synonymous mutations resulting in rare SNPs in the population tend to be biased toward optimality loss. We think that our study will contribute to the development of novel strategies for identifying functional synonymous mutations.  相似文献   

11.
H. Akashi 《Genetics》1995,139(2):1067-1076
Patterns of codon usage and ``silent'''' DNA divergence suggest that natural selection discriminates among synonymous codons in Drosophila. ``Preferred'''' codons are consistently found in higher frequencies within their synonymous families in Drosophila melanogaster genes. This suggests a simple model of silent DNA evolution where natural selection favors mutations from unpreferred to preferred codons (preferred changes). Changes in the opposite direction, from preferred to unpreferred synonymous codons (unpreferred changes), are selected against. Here, selection on synonymous DNA mutations is investigated by comparing the evolutionary dynamics of these two categories of silent DNA changes. Sequences from outgroups are used to determine the direction of synonymous DNA changes within and between D. melanogaster and Drosophila simulans for five genes. Population genetics theory shows that differences in the fitness effect of mutations can be inferred from the comparison of ratios of polymorphism to divergence. Unpreferred changes show a significantly higher ratio of polymorphism to divergence than preferred changes in the D. simulans lineage, confirming the action of selection at silent sites. An excess of unpreferred fixations in 28 genes suggests a relaxation of selection on synonymous mutations in D. melanogaster. Estimates of selection coefficients for synonymous mutations (3.6 <|N(e)s| < 1.3) in D. simulans are consistent with the reduced efficacy of natural selection (|N(e)s| < 1) in the three- to sixfold smaller effective population size of D. melanogaster. Synonymous DNA changes appear to be a prevalent class of weakly selected mutations in Drosophila.  相似文献   

12.
An approximately 6.9-kb region encompassing the RpII215 gene was sequenced for 24 individuals of the island endemic species Drosophila guanche. The comparative analysis of synonymous polymorphism and divergence in D. guanche and D. subobscura, two species with pronounced differences in population size, allows contrasting the nearly neutral character of synonymous mutations. In D. guanche, unlike in D. subobscura, (1) the ratio of preferred to unpreferred synonymous changes was similar for polymorphic and fixed changes, (2) the numbers of preferred and unpreferred changes, both polymorphic and fixed, could be explained by the mutational process, and (3) the estimated scaled selection coefficient for unpreferred mutations did not differ significantly from zero. Additionally, the comparative analysis revealed that both the ratio of preferred to unpreferred synonymous changes and the frequency spectrum of unpreferred polymorphic mutations differed significantly between species. All these results indicate that a large fraction of synonymous mutations in the RpII215 gene behave as effectively neutral in D. guanche, whereas they are weakly selected in D. subobscura. The reduced efficacy of selection in the insular species constitutes strong evidence of the nearly neutral character of synonymous mutations and, therefore, of the role of weak selection in maintaining codon bias.  相似文献   

13.
Genome‐wide association studies (GWAS) and whole‐exome sequencing (WES) generate massive amounts of genomic variant information, and a major challenge is to identify which variations drive disease or contribute to phenotypic traits. Because the majority of known disease‐causing mutations are exonic non‐synonymous single nucleotide variations (nsSNVs), most studies focus on whether these nsSNVs affect protein function. Computational studies show that the impact of nsSNVs on protein function reflects sequence homology and structural information and predict the impact through statistical methods, machine learning techniques, or models of protein evolution. Here, we review impact prediction methods and discuss their underlying principles, their advantages and limitations, and how they compare to and complement one another. Finally, we present current applications and future directions for these methods in biological research and medical genetics.  相似文献   

14.
Epidemiological studies suggest a direct link between melanoma and Parkinson's disease(PD); however, the underlying molecular basis is unknown. Since mutations in Parkin are the major driver of early-onset PD and Parkin was recently reported to play a role in cancer development, we hypothesized that Parkin links melanoma and PD. By analyzing whole exome/genome sequencing of Parkin from 246 melanoma patients, we identified five non-synonymous mutations, three synonymous mutations, and one splice region variant in Parkin in3.6% of the samples. In vitro analysis showed that wild-type Parkin plays a tumor suppressive role in melanoma development resulting in cell-cycle arrest, reduction of metabolic activity, and apoptosis. Using a mass spectrometry-based analysis, we identified potential Parkin substrates in melanoma and generated a functional protein association network. The activity of mutated Parkin was assessed by protein structure modeling and examination of Parkin E3 ligase activity. The Parkin-E28 K mutation impairs Parkin ubiquitination activity and abolishes its tumor suppressive effect. Taken together, our analysis of genomic sequence and in vitro data indicate that Parkin is a potential link between melanoma and Parkinson's disease. Our findings suggest new approaches for early diagnosis and treatment against both diseases.  相似文献   

15.
The last release of p53 somatic mutation database contains more than 20,000 of mutation among which 951 are silent (synonymous). This striking amount of silent mutations is much more than what would be expected if synonymous mutations were effectively neutral. The prevalent explanation to reconcile this vast amount of silent mutations with the neutral expectation is that they are just the subproduct of the hypermutability process that affect cancer cells. Some evidences have been presented in this direction, and the explanation has been taken as granted. Assuming that silent mutations are effectively neutral has major implication in the investigation of mutational processes that affect the gene encoding the p53 protein, since on the basis of this assumption they are considered the Null hypothesis, for instance for measuring and comparing among tissues the endogenous mutability. From this it follows that determining whether silent mutations in the p53 gene, and in all disease genes in general, are or not basically mutational noise, is of paramount importance.

In this paper we readdress this topic by testing whether there is a relationship between the spatial distribution of silent mutations inside the p53 gene and functional significant features of the gene. For this purpose we divided the population of silent mutations in three groups: those that are found accompanied by other mutations (doublets and multiplest), those that were isolated as singlets, but the same mutation was also isolated as being part of a doublet (or multiplet) in another individual. And the last group is composed by those that were always found as singlets and never as being part of a doublet or a multiplet. This last group was expected to be enriched in functionally significant silent mutations. We found that all silent mutations, but particularly those of the last group, are preferentially located in conserved amino acid positions (i.e. functionally important amino acids) and also tend to be located inside suspected splicing enhancers. Noteworthy, this association remains even after eliminating the possible contribution of mutation hotspots. Besides, we present additional evidence in the direction that these putative splicing enhancers are real functional enhancers.  相似文献   


16.
R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration "out of Africa" and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1) sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario.  相似文献   

17.
Statistical analysis of the distribution of 156 kinds of human hemoglobin beta (Hbbeta) chain variants suggests that mutations are essentially random in their location. Thus differential fitness, not differential mutability, is the principal source of nonrandom distribution of interspecies differences in Hbbeta amino acid sequence. Similar analyses of both the location and the kind of interspecies differences detected among primates support this viewpoint and lead us to estimate that at least 95% of all amino acid subsitutions,i.e., nonsynonymous mutations, in Hbbeta are functionally unacceptable in homozygous state. Through the combined use of this estimate and the number of nonsynonymous and synonymous substitutions per nucleotide site inferred from comparisons of entire human and rabbit HbbetamRNA nucleotide sequences, we calculate (a) approximately 70% of synonymous Hbbeta mutations are adaptively undersirable and (b) the mutation rate underlying all changes is lesser than or equal to 10(-8) nucleotide substitutions per nucleotide site per year. Apart from such calculations, analyses of nucleotide patterns in HbbetamRNA as well as in rat preproinsulin mRNA reinforce the notion that a large portion of synonymous mutations are functionally unacceptable and rendered so by selective constraint, at a pretranslational level, of the abundance of particular nucleotide doublets such as CpG.  相似文献   

18.
19.
Intrapatient evolution of human immunodeficiency virus type 1 (HIV-1) is driven by the adaptive immune system resulting in rapid change of HIV-1 proteins. When cytotoxic CD8+ T cells or neutralizing antibodies target a new epitope, the virus often escapes via nonsynonymous mutations that impair recognition. Synonymous mutations do not affect this interplay and are often assumed to be neutral. We test this assumption by tracking synonymous mutations in longitudinal intrapatient data from the C2-V5 part of the env gene. We find that most synonymous variants are lost even though they often reach high frequencies in the viral population, suggesting a cost to the virus. Using published data from SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) assays, we find that synonymous mutations that disrupt base pairs in RNA stems flanking the variable loops of gp120 are more likely to be lost than other synonymous changes: these RNA hairpins might be important for HIV-1. Computational modeling indicates that, to be consistent with the data, a large fraction of synonymous mutations in this genomic region need to be deleterious with a cost on the order of 0.002 per day. This weak selection against synonymous substitutions does not result in a strong pattern of conservation in cross-sectional data but slows down the rate of evolution considerably. Our findings are consistent with the notion that large-scale patterns of RNA structure are functionally relevant, whereas the precise base pairing pattern is not.  相似文献   

20.
The type III machinery of Yersinia transports Yop proteins across the bacterial envelope. The minimal secretion signal of yopQ is located in codons 1-10 that, when fused in frame to the neomycin phosphotransferase gene, is sufficient to promote type III secretion of YopQ(1-10)-Npt. Frame-shift mutations, generated by nucleotide insertions or deletions following the AUG start and suppressed at the fusion site with npt, abrogate signalling of yopQ(1-10) but not of yopQ(1-15). By generating transversions of every single nucleotide in yopQ(1-10), we identified 10 nucleotide positions in codons 2, 3, 5, 7, 9 and 10 that were each required for substrate recognition. One transversion that abolishes secretion, uridyl 9 to adenyl (U9A), is a synonymous codon 3 mutation that retains the original amino acid as confirmed by Edman degradation analysis, suggesting that the mRNA but not the amino acid sequence of yopQ(1-10) is involved in secretion signalling. Although transversion of U8A abrogates signalling of yopQ(1-10), fusion of yopQ codons 11-15 restores secretion. The nucleotides that are required for this suppression by yopQ(11-15) were identified and revealed both synonymous and non-synonymous mutations. Frame-shift mutations introduced into just this suppressor region (codons 11-15) did not abrogate its ability to suppress mutations in the minimal secretion signal (codons 1-10). Thus, elements downstream of the minimal secretion signal of YopQ increase the efficiency of YopQ secretion and suppress mutations elsewhere in the secretion signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号