首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasitic infections caused by Entamoeba histolytica are still major threats against public health, especially in developing countries. Although current therapies exist, the problems associated with parasite resistance and negative side effects make it imperative to search for new therapeutic agents. A systematic scaffold analysis reported herein of a public database containing 474 antiamoebic compounds reveals that benzimidazole is the most active scaffold reported thus far. To gain insights into the antiamoebic activity of novel compounds, the authors report herein the biological activity of 12 compounds, including benzotriazole and indazole derivatives, scaffolds not previously tested against E. histolytica. Compounds with the benzotriazole and indazole scaffolds showed low micromolar activity (IC(50) = 0.304 and 0.339 μM) and are more active than metronidazole, which is the drug of choice used for the treatment of amebiosis. The novel compounds have similar properties to approved drugs. Compounds with novel scaffolds represent promising starting points of an optimization program against E. histolytica.  相似文献   

2.
Homocamptothecins (hCPTs) represent a class of new emerging antitumor agents, which contains a seven-membered beta-hydroxylactone in place of the conventional six-membered alpha-hydroxylactone ring (E ring) of camptothecins. Some novel 7-substituted hCPTs were designed and synthesized based on a newly developed synthetic route which couples ring A with ring C, E and D. Most of the synthesized compounds exhibit very high cytotoxic activity on tumor cell line A549. Some compounds, such as 9b, 9l, and 9y, show broad in vitro antitumor spectrum and are more potent than topotecan. Three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, CoMFA and CoMSIA, were applied to explain the structure-activity relationship (SAR) of the synthesized compounds. Furthermore, molecular docking was used to clarify the binding mode of the synthesized compounds to human DNA topoisomerase I. The important hydrophobic, base-pair stacking, and hydrogen-bonding interactions were observed between the hCPT derivatives and their receptor. The results from molecular modeling will guide the design of novel hCPTs with higher antitumor activity.  相似文献   

3.
The protozoan parasite Entamoeba histolytica is the etiologic agent of amebiasis, a major global public health problem, particularly in developing countries. There is an effective anti-amoebic drug available, however its long term use produces undesirable side effects. As E. histolytica is a micro-aerophilic organism, it is sensitive to high levels of oxygen and the enzymes that are involved in protecting against oxygen-stress are crucial for its survival. Therefore serine acetyltransferase, an enzyme involved in cysteine biosynthesis, was used as a target for identifying potential inhibitors. Virtual screening with Escherichia coli serine acetyltransferase was carried out against the National Cancer Institute chemical database utilizing molecular docking tools such as GOLD and FlexX. The initial analysis yielded 11 molecules of which three compounds were procured and tested for biological activity. The results showed that these compounds partially block activity of the E. coli enzyme and the growth of E. histolytica trophozoites but not mammalian cells.  相似文献   

4.
Paula S  Ball WJ 《Proteins》2004,56(3):595-606
Thapsigargin (TG) is a potent and commonly used inhibitor of the ion transport activity of sarco/endoplasmic reticulum Ca2+-ATPases (SERCA). Based on the recently published crystal structures of rabbit muscle SERCA1a in the Ca2+/E1 (E1) and TG/E2 (E2) conformations, we performed computational docking studies to characterize the molecular interactions that govern binding of TG and TG-analogs by the enzyme. Using the program GOLD (genetic optimization for ligand docking) in combination with the scoring function ChemScore, TG was docked into the binding site of the E1 and E2 conformations of SERCA1a. The docking results revealed a consensus ligand-binding mode consistent with the crystal structure and showed that hydrophobic interactions are the primary driving force of TG binding by SERCA. Moreover, it was shown that the conformational changes accompanying the E2 to E1 transition in the enzyme likely displace TG from its favored orientation in the binding site, thereby substantially reducing its binding affinity. This finding illustrates on the molecular level how TG may exert its inhibitory effect in binding tightly to the E2 form and preventing it from converting into its E1 form, a requirement for catalytic function. We also docked 9 TG analogs into the E2 conformation of the enzyme. Eight of the analogs adopted a binding mode very similar to that of TG, whereas one compound preferred a different orientation in the binding site. Analysis of the predicted binding affinities showed a good correlation with the experimentally observed inhibitory potencies of the analogs. Docking was also performed with several modeled mutants of SERCA1a, whose phenylalanine residue in position 256 (Phe256) had been modified. The experimentally observed declines in TG sensitivity in most of the Phe256 mutants was qualitatively accounted for and appears, at least in part, be due to a slightly altered TG-binding mode.  相似文献   

5.
Artemisinin (Qinghaosu) is a natural constituent found in Artemisia annua L, which is an effective drug against chloroquine-resistant Plasmodium falciparum strains and cerebral malaria. The antimalarial activities of artemisinin and its analogues appear to be mediated by the interactions of the drugs with hemin. In order to understand the antimalarial mechanism and the relationship between the physicochemical properties and the antimalarial activities of artemisinin analogues, we performed molecular docking simulations to probe the interactions of these analogues with hemin, and then performed three-dimensional quantitative structure-activity relationship (3-D-QSAR) studies on the basis of the docking models employing comparative molecular force fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Molecular docking simulations generated probable 'bioactive' conformations of artemisinin analogues and provided a new insight into the antimalarial mechanism. The subsequent partial least squares (PLS) analysis indicates that the calculate binding energies correlate well with the experimental activity values. The CoMFA and CoMSIA models based on the bioactive conformations proved to have good predictive ability and in turn match well with the docking result, which further testified the reliability of the docking model. Combining these results, that is molecular docking and 3-D-QSAR, together, the binding model and activity of new synthesized artemisinin derivatives were well explained.  相似文献   

6.
Membrane dipeptidase (MDP) is a membrane-bound glycoprotein involved in the hydrolysis of dipeptides, showing specific activity for dipeptides. Recent study showed that membrane dipeptidase was the receptor for a lung-targeting peptide identified by in vivo phage display and the crystal structure of the cilastatin-liganded human renal dipeptidase was determined. We performed a pharmacophore-based virtual screening and molecular docking in order to characterize MDP binding interactions with its substrates. A ligand-based pharmacophore model represented only a slight enrichment because of a lacked variety and centralization of ligand features. Molecular docking study was used to incorporate ligand conformational changes in the binding sites and the performance was much better than pharmacophore model; only 10% of compound library needed to be screened in order to detect all included active compounds. In addition, we found that one of the crystallographically observed water molecules plays an important role in the binding modes between MDP and its substrate.  相似文献   

7.
A series of 12 carbohydrate compounds were synthesized by introduction of a sulfated group at specific positions and evaluated for their activities against dengue virus (DENV) infection as well as binding to BHK-21 cells. 3-O-sulfated GlcA was active against DENV infection, whereas 2-O-sulfated GlcA and 3,6-di-O-sulfated Glc showed negligible activity. Persulfated compounds did not inhibit DENV infection. These results provided a rationale for designing sulfated carbohydrate compounds with low molecular mass as anti-DENV agents targeting E protein functions. 3-O-Sulfated GlcA showed no significant cytotoxicity at 1mM. The EC(50) value (120μM) was lower than that of sucrose octasulfate (SOS), a small molecular weight inhibitor of DENV infection. Two negatively charged groups, 3-O-sulfate and 6-C-carboxylic acid, appear to be essential for anti-DENV activity. We performed docking study to investigate the binding potential of 3-O-sulfated GlcA with respect to DENV E protein. The docking study showed that distance and conformation of these negative charges on the carbohydrate may be suitable for association with three amino acid residues of E protein critically involved in virus adsorption (Lys295, Ser145, and Gly159). This interaction may competitively prevent functional DENV binding to receptor(s) on host cells. In conclusion, 3-O-sulfated GlcA is a chemical probe that may facilitate exploration of the molecular mechanisms underlying manifestations of dengue diseases.  相似文献   

8.
Computational assessment of the binding interactions of drugs is an important component of computer-aided drug design paradigms. In this perspective, a set of 30 1-(substituted phenyl)-3-(naphtha[1, 2-d] thiazol-2-yl) urea/thiourea derivatives showing antiparkinsonian activity were docked into inhibitor binding cavity of human adenosine A(2A) receptor (AA2AR) to understand their mode of binding interactions in silico. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results signify that the molecular docking approach is reliable and produces a good correlation coefficient (r(2) = 0.483) between docking score and antiparkinsonian activity (in terms of % reduction in catalepsy score). Potent antiparkinsonian agents carried methoxy group in the phenyl ring, exhibited both hydrophilic and lipophilic interactions with lower energy of binding at the AA(2A)R. These molecular docking analyses should, in our view, contribute for further development of selective AA(2A)R antagonists for the treatment of Parkinson's disease.  相似文献   

9.
Two new series of 2H-1-benzopyran-2-one derivatives substituted at C-6 and/or C-7 with propanolamines, and/or piperazine propanol derivatives have been synthesized and assayed for the H(1)-histamine antagonist. Twelve of the 20 newly synthesized 4- substituted benzopyrones have shown potent antihistaminic H(1) activity. In addition, molecular modeling and docking of the tested compounds into high affinity histamine binding protein (HBP) and histamine N-methyltranseferase (HNMT) active site in complex with its bound inhibitor (diphenhydramine) was performed in order to predict the affinity and orientation of these compounds at the active sites. The ICM score values show good agreement with predicted binding affinities obtained by molecular docking studies as verified by pharmacological screening. The results showed similar orientation of the target compounds at HBP, and HNMT active sites compared with reported histamine H(1) antagonist. Also, it was concluded that in order for the compounds to be active, they must bind with both active sites of HNMT enzyme (two pockets) to inhibit it. Compounds 8c, 8i, 11g, 11i, and 11k; observe the maximum activities.  相似文献   

10.
Viper venom hyaluronidase (VV-HYA) inhibitors have long been used as therapeutic agents for arresting the local and systemic effects caused during its envenomation. Henceforth, to understand its structural features and also to identify the best potential inhibitor against it the present computational study was undertaken. Structure-based homology modeling of VV-HYA followed by its docking and free energy-based ranking analysis of ligand, the MD simulations of the lead complex was also performed. The sequence analysis and homology modeling of VV-HYA revealed a distorted (β/α)8 folding as in the case of hydrolases family of proteins. Molecular docking of the resultant 3D structure of VV-HYA with known inhibitors (compounds 1–25) revealed the importance of molecular recognition of hotspot residues (Tyr 75, Arg 288, and Trp 321) other than that of the active site residues. It also revealed that Trp 321 of VV-HYA is highly important for mediating π–π interactions with ligands. In addition, the molecular docking and comparative free energy binding analysis was investigated for the VV-HYA inhibitors (compounds 1–25). Both molecular docking and relative free energy binding analysis clearly confirmed the identification of sodium chromoglycate (compound 1) as the best potential inhibitor against VV-HYA. Molecular dynamics simulations additionally confirmed the stability of their binding interactions. Further, the information obtained from this work is believed to serve as an impetus for future rational designing of new novel VV-HYA inhibitors with improved activity and selectivity.  相似文献   

11.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

12.
AT1 receptor is an interesting biological target involved in several important diseases, such as blood hypertension and cardiovascular pathologies. In this study we investigated the main electrostatic and steric features of a series of AT1 antagonists related to hypertensive activity using structure and ligand-based strategies (docking and CoMFA). The generated 3D model had good internal and external consistency and was used to predict the potency of an external test set. The predicted values of pIC50 are in good agreement with the experimental results of biological activity, indicating that the 3D model can be used to predict the biological property of untested compounds. The electrostatic and steric CoMFA maps showed molecular recognition patterns, which were analyzed with structure-based molecular modeling studies (docking). The most and the least potent compounds docked into the AT1 binding site were subjected to molecular dynamics simulations with the aim to verify the stability and the flexibility of the ligand-receptor interactions. These results provided valuable insights on the electronic/structural requirements to design novel AT1 antagonists.  相似文献   

13.
A novel series of amino acids conjugated quinazolinone-Schiff’s bases were synthesized and screened for their in vitro anticancer activity and validated by molecular docking and DNA binding studies. In the present investigations, compounds 32, 33, 34, 41, 42 and 43 showed most potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to doxorubicin and ethidium bromide as a positive control respectively. The structure-activity relationship (SAR) revealed that the tryptophan and phenylalanine derived electron donating groups (OH and OCH3) favored DNA binding studies and anticancer activity whereas; electron withdrawing groups (Cl, NO2, and F) showed least anticancer activity. The molecular docking study, binding interactions of the most active compounds 33, 34, 42 and 43 stacked with A–T rich regions of the DNA minor groove by surface binding interactions were confirmed.  相似文献   

14.
The development of SrtA inhibitors targeting the biothreat organism namely Bacillus anthracis was achieved by the combined approach of pharmacophore modeling, binding interactions, electron transferring capacity, ADME, and Molecular dynamics studies. In this study, experimentally reported Ba-SrtA inhibitors (pyridazinone and pyrazolethione derivatives) were considered for the development of enhanced pharmacophoric model. The obtained AAAHR hypothesis was a pure theoretical concept that accounts for common molecular interaction network present in experimentally active pyridazinone and pyrazolethione derivatives. Pharmacophore-based screening of AAAHR hypothesis provides several new compounds, and those compounds were treated with four phases of docking protocols with combined Glide-QPLD docking approach. In this approach, scoring and charge accuracy variations were seen to be dominated by QM/MM approach through the allocation of partial charges. Finally, we reported the best compounds from binding db, Chembridge db, and Toslab based on scoring values, energy parameters, electron transfer reaction, ADME, and cell adhesion inhibition activity. The dynamic state of interaction and binding energy assess that new compounds are more active inside the binding pocket and these compounds on experimental validations will survive as better inhibitors for targeting the cell adhesion mechanism of Ba-SrtA.  相似文献   

15.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

16.
A series of compounds was synthesized and characterized to explore new antimicrobial agents. These compounds were evaluated by using the agar cup plate method. The most active compound exhibited a zone of inhibition 18±0.09 mm and 19±0.09 mm against E. Coli and S. aureus, respectively. To gain insights into the intermolecular interactions, molecular docking studies were performed at the active site of the glucosamine fructose 6 phosphate synthase (GlcN 6 p) enzyme (PDB Id: 1XFF). The results of the molecular docking studies are in agreement with the pharmacological evaluation with potent compounds, exhibiting docking scores of −11.2. However, deformability, B-factor and covariance computations showed a result that the most active compound favored molecular connections with the protein. Therefore, our research is important for the development of antimicrobial agents  相似文献   

17.
Lape M  Elam C  Versluis M  Kempton R  Paula S 《Proteins》2008,70(3):639-649
The ion transport activity of the sarco/endoplasmic reticulum calcium ATPase (SERCA) is specifically and potently inhibited by the small molecule 2,5-di-tert-butylhydroquinone (BHQ). In this study, we investigated the relative importance of the nature and position of BHQ's four substituents for enzyme inhibition by employing a combination of experimental and computational techniques. The inhibitory potencies of 21 commercially available or synthesized BHQ derivatives were determined in ATPase activity assays, and 11 compounds were found to be active. Maximum inhibitory potency was observed in compounds with two para hydroxyl groups, whereas BHQ analogues with only one hydroxyl group were still active, albeit with a reduced potency. The results also demonstrated that two alkyl groups were an absolute requirement for activity, with the most potent compounds having 2,5-substituents with four or five carbon atoms at each position. Using the program GOLD in conjunction with the ChemScore scoring function, the structures of the BHQ analogues were docked into the crystal structure of SERCA mimicking the enzyme's E(2) conformation. Analysis of the docking results indicated that inhibitor binding to SERCA was primarily mediated by a hydrogen bond between a hydroxyl group and Asp-59 and by hydrophobic interactions involving the bulky inhibitor alkyl groups. Attempts to dock BHQ into crystal structures corresponding to the E(1) conformation of the enzyme failed, because the conformational changes accompanying the E(2)/E(1) transition severely restricted the size of the binding site, suggesting that BHQ stabilizes the enzyme in its E(2) form. The potential role of Glu309 in enzyme inhibition is discussed in the context of the computational results. The docking scores correlated reasonably well with the measured inhibitory potencies and allowed the distinction between active and inactive compounds, which is a key requirement for future virtual screening of large compound databases for novel SERCA inhibitors.  相似文献   

18.
A series of novel indoles were designed and their molecular modeling simulation study including fitting to a 3D pharmacophore model using CATALYST program and their docking into the NS3 active site was examined as HCV NS3 protease inhibitor. Several compounds showed significant high simulation docking score and fit values. The designed compounds were synthesized and biologically evaluated in vitro using an NS3 protease binding assay, where compounds 10a-k showed significant inhibitory activity (> or =67% inhibition at 100 microg/mL). Of these, compounds 10c and 10f demonstrated potent HCV NS3 protease inhibitors with IC(50) values of 15 and 13 microM, respectively. Enantio-selective Michael addition of an indole derivative in the presence of catalytic amount of AlCl(3) and quinine at room temperature afforded the adduct 7e in excellent yield with 73% ee. The product was converted into 10l, which showed lower activity than the mixture of the corresponding diastereoisomers.  相似文献   

19.
20.
The AKT signaling pathway has been identified as an important target for cancer therapy. Among small-molecule inhibitors of AKT that have shown tremendous potential in inhibiting cancer, MK-2206 is a highly potent, selective and orally active allosteric inhibitor. Promising preclinical anticancer results have led to entry of MK-2206 into Phase I/II clinical trials. Despite such importance, the exact binding mechanism and the molecular interactions of MK-2206 with human AKT are not available. The current study investigated the exact binding mode and the molecular interactions of MK-2206 with human AKT isoforms using molecular docking and (un)binding simulation analyses. The study also involved the docking analyses of the structural analogs of MK-2206 to AKT1 and proposed one as better inhibitor. The Dock was used for docking simulations of MK-2206 into the allosteric site of AKT isoforms. The Ligplot+ was used for analyses of polar and hydrophobic interactions between AKT isoforms and the ligands. The MoMa-LigPath web server was used to simulate the ligand (un)binding from the binding site to the surface of the protein. In the docking and (un)binding simulation analyses of MK-2206 with human AKT1, the Trp-80 was the key residue and showed highest decrease in the solvent accessibility, highest number of hydrophobic interactions, and the most consistent involvement in all (un)binding simulation phases. The number of molecular interactions identified and calculated binding energies and dissociation constants from the co-complex structures of these isoforms, clearly explained the varying affinity of MK-2206 towards these isoforms. The (un)binding simulation analyses identified various additional residues which despite being away from the binding site, play important role in initial binding of the ligand. Thus, the docking and (un)binding simulation analyses of MK-2206 with AKT isoforms and its structure analogs will provide a suitable model for studying drug-protein interaction and will help in designing better drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号