首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are over 10,000 species of parasitic protozoa, a subset of which can cause considerable disease in humans. Here we examine in detail the complex immune response generated during infection with a subset of these parasites: Trypanosoma cruzi, Leishmania sp., Toxoplasma gondii, and Plasmodium sp. While these particular species perhaps represent the most studied parasites in terms of understanding how T cells function during infection, it is clear that the lessons learned from this body of work are also relevant to the other protozoa known to induce a CD8+ T cell response. This review will highlight some of the key studies that established that CD8+ T cells play a major role in protective immunity to protozoa, the factors that promote the generation as well as maintenance of the CD8+ T cell response during these infections, and draw attention to some of the gaps in our knowledge. Moreover, the development of new tools, including MHC-Class I tetramer reagents and the use of TCR transgenic mice or genetically modified parasites, has provided a better appreciation of how parasite specific CD8+ T cell responses are initiated and new insights into their phenotypic plasticity  相似文献   

2.
Trypanosoma cruzi infection leads to development of chronic Chagas disease. In this article, we provide an update on the current knowledge of the mechanisms employed by the parasite to gain entry into the host cells and establish persistent infection despite activation of a potent immune response by the host. Recent studies point to a number of T. cruzi molecules that interact with host cell receptors to promote parasite invasion of the diverse host cells. T. cruzi expresses an antioxidant system and thromboxane A(2) to evade phagosomal oxidative assault and suppress the host's ability to clear parasites. Additional studies suggest that besides cardiac and smooth muscle cells that are the major target of T. cruzi infection, adipocytes and adipose tissue serve as reservoirs from where T. cruzi can recrudesce and cause disease decades later. Further, T. cruzi employs at least four strategies to maintain a symbiotic-like relationship with the host, and ensure consistent supply of nutrients for its own survival and long-term persistence. Ongoing and future research will continue to help refining the models of T. cruzi invasion and persistence in diverse tissues and organs in the host.  相似文献   

3.
In Toxoplasma gondii, lactate dehydrogenase is encoded by two independent and developmentally regulated genes LDH1 and LDH2. These genes and their products have been implicated in the control of a metabolic flux during parasite differentiation. To investigate the significance of LDH1 and LDH2 in this process, we generated stable transgenic parasite lines in which the expression of these two expressed isoforms of lactate dehydrogenase was knocked down in a stage-specific manner. These LDH knockdown parasites exhibited variable growth rates in either the tachyzoite or the bradyzoite stage, as compared with the parental parasites. Their differentiation processes were impaired when the parasites were grown under in vitro conditions. In vivo studies in a murine model system revealed that tachyzoites of these parasite lines were unable to form significant numbers of tissue cysts and to establish a chronic infection. Most importantly, all mice that were initially infected with tachyzoites of either of the four LDH knockdown lines survived a subsequent challenge with tachyzoites of the parental parasites (10(4)), a dose that usually causes 100% mortality, suggesting that live vaccination of mice with the LDH knockdown tachyzoites can confer protection against T. gondii. Thus, we conclude that LDH expression is essential for parasite differentiation. The knockdown of LDH1 and LDH2 expression gave rise to virulence-attenuated parasites that were unable to exhibit a significant brain cyst burden in a murine model of chronic infection.  相似文献   

4.
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection.  相似文献   

5.
Malaria parasites can have strong effects on the population dynamics and evolution of migratory bird species. In many species, parasite transmission occurs on the wintering grounds, but studies to determine the consequences of infection have taken place during the breeding season, when malaria parasites circulate at chronic levels. We examined the predictors of malarial infections for great reed warblers during the northern winter in Africa, where active parasite transmission is thought to occur and naïve individuals experience acute infections. Counter to expectations, we found that winter infection intensities were lower than those encountered on the breeding grounds. One potential explanation is that reduced immune function during breeding allows parasites to persist at higher chronic intensities. We found no relationships between the incidence or intensity of infection on condition (as measured by scaled mass index, plasma metabolites, and feather corticosterone), spring migration departure dates, or home range sizes. We also tested a prediction of the Hamilton–Zuk hypothesis and found that male ornament (song) quality was unrelated to parasitic infection status. Overall, our results provide the first evidence that long‐distance migrants captured on their wintering grounds are in the chronic stage of infection, and suggest that winter studies may fare no better than breeding studies at determining the costs of acute malarial infection for great reed warblers.  相似文献   

6.
Toxoplasma gondii establishes a chronic infection by forming cysts preferentially in the brain. This chronic infection is one of the most common parasitic infections in humans and can be reactivated to develop life-threatening toxoplasmic encephalitis in immunocompromised patients. Host-pathogen interactions during the chronic infection include growth of the cysts and their removal by both natural rupture and elimination by the immune system. Analyzing these interactions is important for understanding the pathogenesis of this common infection. We developed a differential equation framework of cyst growth and employed Akaike Information Criteria (AIC) to determine the growth and removal functions that best describe the distribution of cyst sizes measured from the brains of chronically infected mice. The AIC strongly support models in which T. gondii cysts grow at a constant rate such that the per capita growth rate of the parasite is inversely proportional to the number of parasites within a cyst, suggesting finely-regulated asynchronous replication of the parasites. Our analyses were also able to reject the models where cyst removal rate increases linearly or quadratically in association with increase in cyst size. The modeling and analysis framework may provide a useful tool for understanding the pathogenesis of infections with other cyst producing parasites.  相似文献   

7.
Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.  相似文献   

8.
Trypanosoma cruzi, a parasitic protozoan, is the etiological agent of Chagas disease, an endemic and neglected pathology in Latin America. It presents a life cycle that involves a hematophagous insect and man as well as domestic and wild mammals. The parasitic infection is not eliminated by the immune system of mammals; thus, the vertebrate host serves as a parasite reservoir. Additionally, chronic processes leading to dysfunction of the cardiac and digestive systems are observed. To establish a chronic infection some parasites should resist the oxidative damage to its DNA exerted by oxygen and nitrogen free radicals (ROS/RNS) generated in host cells. Till date there are no reports directly showing oxidative DNA damage and repair in T. cruzi. We establish that ROS/RNS generate nuclear and kinetoplastid DNA damage in T. cruzi that may be partially repaired by the parasite. Furthermore, we determined that both oxidative agents diminish T. cruzi cell viability. This effect is significantly augmented in parasites subsequently incubated with methoxyamine, a DNA base excision repair (BER) pathway inhibitor, strongly suggesting that the maintenance of T. cruzi viability is a consequence of DNA repair mechanisms.  相似文献   

9.
Certain parasites have evolved to evade the immune response and establish chronic infections that may persist for many years. T cell responses in these conditions become muted despite ongoing infection. Upregulation of surface receptors with inhibitory properties provides an immune cell-intrinsic mechanism that, under conditions of chronic infection, regulates immune responses and limits cellular activation and associated pathology. The negative regulator, CD200 receptor, and its ligand, CD200, have been shown to regulate macrophage activation and reduce pathology following infection. We show that CD4 T cells also increase expression of inhibitory CD200 receptors (CD200R) in response to chronic infection. CD200R was upregulated on murine effector T cells in response to infection with bacterial, Salmonella enterica, or helminth, Schistosoma mansoni, pathogens that respectively drive predominant Th1- or Th2-responses. In vitro chronic and prolonged stimuli were required for the sustained upregulation of CD200R, and its expression coincided with loss of multifunctional potential in T effector cells during infection. Importantly, we show an association between IL-4 production and CD200R expression on T effector cells from humans infected with Schistosoma haematobium that correlated effectively with egg burden and, thus infection intensity. Our results indicate a role of CD200R:CD200 in T cell responses to helminths which has diagnostic and prognostic relevance as a marker of infection for chronic schistosomiasis in mouse and man.  相似文献   

10.
The present study compared the community of parasites in populations of Triportheus angulatus and T. curtus from a tributary of the Amazon River in northern Brazil. All hosts had one or more parasite species, 862,687 parasites were collected from T. curtus and 302,008 from T. angulatus. Species richness of parasites, Shannon diversity index and evenness index were higher for T. angulatus. The parasite communities of both hosts was similar (99%) and composed by Ichthyophthirius multifiliis, Anacanthorus pitophallus, metacercariae and Procamallanus (Spirocamallanus) inopinatus, with dominance of I. multifiliis. However, low infection level by Piscinodinium pilullare, Dolops sp. and Contracaecum larvae occurred only in T. angulatus, and Spironucleus sp. was found only in T. curtus. There were differences in the prevalence, intensity and mean abundance for some parasites of both hosts. There was aggregated dispersion of parasites in both hosts, but the infection of P. (S.) inopinatus in T. angulatus showed a random dispersion. For T. angulatus and T. curtus, the diversity and abundance of parasites were influenced by the host size. This was the first report of these parasite species for T. curtus, as well as of I. multifiliis, P. pilullare, Dolops sp., P. (S.) inopinatus and Contracecum sp. for T. angulatus.  相似文献   

11.
Abrogation of tolerance to a chronic viral infection   总被引:4,自引:0,他引:4  
This study documents failure of peripheral tolerance mechanisms in a chronic viral infection and shows that T cell tolerance to a viral Ag seen as self from fetal life can be broken despite the presence of this Ag in extrathymic tissues. Congenital infection of mice with lymphocytic choriomeningitis virus (LCMV) results in T cell tolerance to the virus. Such mice become carriers for life harboring virus in many tissues including the thymus and exhibit no LCMV-specific CTL responses. Our previous studies have documented the curing of this congenitally acquired chronic infection after adoptive transfer of CD8+ T cells from LCMV-immune mice and the presence of host-derived, LCMV-specific CTL in these "cured" carriers. In this study we have examined the mechanism by which these carriers acquired T cell competence and show that these CTL differentiated from the bone marrow after elimination of viral Ag from the thymus. These results demonstrate that even when a chronic infection has been established in utero, the adult thymus retains the ability to restore immunocompetence to the host and to provide protection against reinfection. Surprisingly, these LCMV specific CTL were acquired at a time when infectious virus and intracellular viral Ag, although cleared from the thymus, were readily detectable in organs such as the kidney, testes, and brain. In fact, active viral replication in peripheral tissues was ongoing when these mice acquired new virus-specific T cells. These results show that clearance of virus form the thymus was sufficient to abrogate tolerance to a congenitally acquired chronic infection and that Ag in peripheral tissues did not tolerize newly developing T cells. These findings suggest that mechanisms that operate on immature cells within the thymus to silence self-reactive T cells are effective in induction of tolerance to viruses, but mechanisms of tolerizing mature T cells are likely to breakdown. This has implications for virus-induced autoimmunity and for treatment of chronic infections.  相似文献   

12.
While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we evaluate the role of the inhibitory receptor T cell immunoglobulin and mucin domain–containing-3 (TIM3) during chronic M. tuberculosis infection. We find that TIM3 expressing T cells accumulate during chronic infection, co-express other inhibitory receptors including PD1, produce less IL-2 and TNF but more IL-10, and are functionally exhausted. Finally, we show that TIM3 blockade restores T cell function and improves bacterial control, particularly in chronically infected susceptible mice. These data show that T cell immunity is suboptimal during chronic M. tuberculosis infection due to T cell exhaustion. Moreover, in chronically infected mice, treatment with anti-TIM3 mAb is an effective therapeutic strategy against tuberculosis.  相似文献   

13.
Chronic Trypanosoma cruzi infections are typically lifelong, with small numbers of parasites surviving in restricted tissue sites, which include the gastrointestinal tract. There is considerable debate about the replicative status of these persistent parasites and whether there is a role for dormancy in long-term infection. Here, we investigated T. cruzi proliferation in the colon of chronically infected mice using 5-ethynyl-2′deoxyuridine incorporation into DNA to provide ‘snapshots’ of parasite replication status. Highly sensitive imaging of the extremely rare infection foci, at single-cell resolution, revealed that parasites are three times more likely to be in S-phase during the acute stage than during the chronic stage. By implication, chronic infections of the colon are associated with a reduced rate of parasite replication. Despite this, very few host cells survived infection for more than 14 days, suggesting that T. cruzi persistence continues to involve regular cycles of replication, host cell lysis and re-infection. We could find no evidence for wide-spread dormancy in parasites that persist in this tissue reservoir.  相似文献   

14.
Human filarial parasites cause chronic infection associated with long-term down-regulation of the host's immune response. We show here that CD4+ T cell regulation is the main determinant of parasite survival. In a laboratory model of infection, using Litomosoides sigmodontis in BALB/c mice, parasites establish for >60 days in the thoracic cavity. During infection, CD4+ T cells at this site express increasing levels of CD25, CTLA-4, and glucocorticoid-induced TNF receptor family-related gene (GITR), and by day 60, up to 70% are CTLA-4(+)GITR(high), with a lesser fraction coexpressing CD25. Upon Ag stimulation, CD4(+)CTLA-4(+)GITR(high) cells are hyporesponsive for proliferation and cytokine production. To test the hypothesis that regulatory T cell activity maintains hyporesponsiveness and prolongs infection, we treated mice with Abs to CD25 and GITR. Combined Ab treatment was able to overcome an established infection, resulting in a 73% reduction in parasite numbers (p < 0.01). Parasite killing was accompanied by increased Ag-specific immune responses and markedly reduced levels of CTLA-4 expression. The action of the CD25(+)GITR+ cells was IL-10 independent as in vivo neutralization of IL-10R did not restore the ability of the immune system to kill parasites. These data suggest that regulatory T cells act, in an IL-10-independent manner, to suppress host immunity to filariasis.  相似文献   

15.
We studied the role of host ploidy and parasite exposure on immune defence allocation in a snail-trematode system (Potamopyrgus antipodarum-Microphallus sp.). In the field, haemocyte (the defence cell) concentration was lowest in deep-water habitats where infection is relatively low and highest in shallow-water habitats where infection is common. Because the frequency of asexual triploid snails is positively correlated with depth, we also experimentally studied the role of ploidy by exposing both diploid sexual and triploid asexual snails to Microphallus eggs. We found that triploid snails had lower haemocyte concentrations than did diploids in both parasite-addition and parasite-free treatments. We also found that both triploids and diploids increased their numbers of large granular haemocytes at similar rates after parasite exposure. Because triploid P. antipodarum have been shown to be more resistant to allopatric parasites than diploids, the current results suggest that the increased resistance of triploids is because of intrinsic genetic properties rather than to greater allocation to defence cells. This finding is consistent with recent theory on the advantages of increased ploidy for hosts combating coevolving parasites.  相似文献   

16.
Hematological values and parasitological fauna of free-rangingMacaca hecki and the hybrid group betweenM. hecki/M. tonkeana of Sulawesi Island, Indonesia, were investigated. The hematological values, especially the red cell number (RBC), were lower than those of other macaque species, indicating that Sulawesi macaques are slightly anemic. Several parasites including Plasmodium sp., trombiculid mites, andTrichuris trichiura were identified. Although infection by Plasmodium was observed with considerable frequency, no clear relationship between its infection and the occurrence of anemia was found. Trombiculid mites and eggs ofAnatrichosoma sp. were detected in foci of the ears of most monkeys. The infection with a trombiculid mite is the first recorded occurrence in free-ranging wild Sulawesi macaques. Gastrointestinal parasites were identified from their eggs in fecal samples, where five species of nematoda and one trematoda species were found.  相似文献   

17.
A mouse monoclonal anti-alpha-tubulin antibody was used to investigate the disposition of the cytoskeletal microtubules of three tissue culture cell lines--J774 macrophages, BSC-1, and Vero cells--infected with the Brazil strain of Trypanosoma cruzi. Indirect immunofluorescence light microscopy was used to demonstrate the antigenic response in host cells and parasites, simultaneously. In all morphotypes of T. cruzi, the monoclonal antibody reacted with all subpopulations of microtubules, inclusively, the subpellicular, flagellar, cytopharyngeal, and mitotic. The host cell cytoskeletal microtubule framework was revealed and the redistribution and destruction of the microtubular lattice in response to parasite infection over a 120 h period recorded. Our results show that after the initial inoculation of tissue cultures with trypomastigotes, the parasites penetrate the cells and locate in the perinuclear region of the cell where they multiply. The number and distribution of host cell microtubules were altered during the infection. The normal radial distribution of microtubules extending from the center of the cell to the periphery was destroyed. The remaining microtubules were observed at the periphery encircling, but well removed from the proliferating parasites. The complete transformation of the parasites was monitored throughout the infection with the end result being the liberation of parasites and the near complete destruction of the microtubular framework of the host cell. A residual population of dividing spheromastigotes was observed in cells liberating trypomastigotes. Colloidal gold labeling of thin sections as seen in the electron microscope affirmed the specificity of our monoclonal antibody to all subpopulations of microtubules in T. cruzi.  相似文献   

18.
In contrast to L. major, the factors required for clearance of Leishmania amazonensis parasites from infected macrophages have been difficult to define. Multiple studies have made progress towards identifying the phenotypic differences in various cell types secondary to L. amazonensis infection as compared to L. major infection, but few have shown the cell types or factors required for parasite clearance. Based on studies which identified that mice previously infected with L. major and healed can mount a protective immune response against L. amazonensis, this study identifies cell types and factors from draining lymph node cells of L. major-infected mice that are necessary and sufficient to control infection in L. amazonensis-infected bone-marrow derived macrophages. Using a transwell system we show that soluble factors from CD4+T cells and B cells were required to kill intracellular parasites. One of these factors, L. major-specific immunoglobulin, may serve to trigger macrophage activation and promote parasite killing via superoxide production. Identification of these factors will provide more precise knowledge of host-cell signaling required to promote an effective immune response against L. amazonensis.  相似文献   

19.
ABSTRACT. A mouse monoclonal anti-α-tubulin antibody was used to investigate the disposition of the cytoskeletal microtubules of three tissue culture cell lines–J774 macrophages, BSC-1, and Vero cells–infected with the Brazil strain of Trypanosoma cruzi. Indirect immunofluorescence light microscopy was used to demonstrate the antigenic response in host cells and parasites, simultaneously. In all morphotypes of T. cruzi, the monoclonal antibody reacted with all subpopulations of microtubules, inclusively, the subpellicular, flagellar, cytopharyngeal, and mitotic. The host cell cytoskeletal microtubule framework was revealed and the redistribution and destruction of the microtubular lattice in response to parasite infection over a 120 h period recorded. Our results show that after the initial inoculation of tissue cultures with trypomastigotes, the parasites penetrate the cells and locate in the perinuclear region of the cell where they multiply. The number and distribution of host cell microtubules were altered during the infection. The normal radial distribution of microtubules extending from the center of the cell to the periphery was destroyed. The remaining microtubules were observed at the periphery encircling, but well removed from the proliferating parasites. The complete transformation of the parasites was monitored throughout the infection with the end result being the liberation of parasites and the near complete destruction of the microtubular framework of the host cell. A residual population of dividing spheromastigotes was observed in cells liberating trypomastigotes. Colloidal gold labeling of thin sections as seen in the electron microscope affirmed the specificity of our monoclonal antibody to all subpopulations of microtubules in T. cruzi.  相似文献   

20.
Immunofluorescence studies of normal and Trypanosoma cruzi-infected primary cultures of heart muscle cells were performed to gather information about the arrangement of myofibrillar components during the intracellular life cycle of this parasite. By using a panel of monoclonal antibodies against various myofibrillar proteins, a progressive disruption and loss of contractile proteins (such myosin and actin) of the host cell was detected during infection. The host cell formed a loose network of myofibrillar proteins around the parasites. Breakdown of the myofibrils occurred in regions where the parasites were present, and heavily infected cells showed myofibrillar proteins at their periphery. In parallel, we investigated the effect of T. cruzi infection on intracellular calcium levels by using a Ca2+ fluorescent indicator (confocal microscopy). Infected cardiomyocytes displayed a marked impairment in contractility, and calcium influxes became irregular and less intense when compared with those of non-infected cells. Our results demonstrate that T. cruzi infection dramatically affects calcium fluxes and causes myofibrillar breakdown disturbing cardiomyocyte contractility.Financial support through grants and scholarships from the Brazilian funding agencies FAPESP, CNPq, and CAPES is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号