首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
Eukaryotic translation initiation factor 4E (eIF4E) is a key factor involved in different aspects of mRNA metabolism. Drosophila melanogaster genome encodes eight eIF4E isoforms, and the canonical isoform eIF4E-1 is a ubiquitous protein that plays a key role in mRNA translation. eIF4E-3 is specifically expressed in testis and controls translation during spermatogenesis. In eukaryotic cells, translational control and mRNA decay is highly regulated in different cytoplasmic ribonucleoprotein foci, which include the processing bodies (PBs). In this study, we show that Drosophila eIF4E-1 and eIF4E-3 occur in PBs along the DEAD-box RNA helicase Me31B. We show that Me31B interacts with eIF4E-1 and eIF4E-3 by means of yeast two-hybrid system, FRET in D. melanogaster S2 cells and coimmunoprecipitation in testis. Truncation and point mutations of Me31B proteins show two eIF4E-binding sites located in different protein domains. Residues Y401-L407 (at the carboxy-terminus) are essential for interaction with eIF4E-1, whereas residues F63-L70 (at the amino-terminus) are critical for interaction with eIF4E-3. The residue W117 in eIF4E-1 and the homolog position F103 in eIF4E-3 are necessary for Me31B-eIF4E interaction suggesting that the change of tryptophan to phenylalanine provides specificity. Me31B represents a novel type of eIF4E-interacting protein with dual and specific interaction domains that might be recognized by different eIF4E isoforms in different tissues, adding complexity to the control of gene expression in eukaryotes.  相似文献   

3.
4.
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.  相似文献   

5.
Characterization of mammalian eIF4E-family members.   总被引:7,自引:0,他引:7  
The translational factor eukaryotic initiation factor 4E (eIF4E) is a central component in the initiation and regulation of translation in eukaryotic cells. Through its interaction with the 5' cap structure of mRNA, eIF4E functions to recruit mRNAs to the ribosome. The accumulation of expressed sequence tag sequences has allowed the identification of three different eIF4E-family members in mammals termed eIF4E-1, eIF4E-2 (4EHP, 4E-LP) and eIF4E-3, which differ in their structural signatures, functional characteristics and expression patterns. Unlike eIF4E-1, which is found in all eukaryotes, orthologues for eIF4E-2 appear to be restricted to metazoans, while those for eIF4E-3 have been found only in chordates. Like prototypical eIF4E-1, eIF4E-2 was found to be ubiquitously expressed, with the highest levels in the testis. Expression of eIF4E-3 was detected only in heart, skeletal muscle, lung and spleen. Similarly to eIF4E-1, both eIF4E-2 and eIF4E-3 can bind to the mRNA cap-structure. However, in contrast to eIF4E-1 which interacts with both the scaffold protein, eIF4G and the translational repressor proteins, the eIF4E-binding proteins (4E-BPs), eIF4E-2 and eIF4E-3 each possesses a range of partial activities. eIF4E-2 does not interact with eIF4G, but does interact with 4E-BPs. Conversely, eIF4E-3 interacts with eIF4G, but not with 4E-BPs. Neither eIF4E-2 nor eIF4E-3 is able to rescue the lethality of eIF4E gene deletion in yeast. It is hypothesized that each eIF4E-family member fills a specialized niche in the recruitment of mRNAs by the ribosome through differences in their abilities to bind cap and/or to interact with eIF4G and the 4E-BPs.  相似文献   

6.
Eukaryotic translation initiation factor 4E (eIF4E) is an essential component of the translational machinery that binds m(7)GTP and mediates the recruitment of capped mRNAs by the small ribosomal subunit. Recently, a number of proteins with homology to eIF4E have been reported in plants, invertebrates, and mammals. Together with the prototypical translation factor, these constitute a new family of structurally related proteins. To distinguish the prototypical translation factor eIF4E from other family members, it has been termed eIF4E-1 (Keiper, B. D., Lamphear, B. J., Deshpande, A. M., Jankowska-Anyszka, M., Aamodt, E. J., Blumenthal, T., and Rhoads, R. E. (2000) J. Biol. Chem. 275, 10590-10596). We describe the characterization of two eIF4E family members in the zebrafish Danio rerio. Based on their relative identities with human eIF4E-1, these zebrafish proteins are termed eIF4E-1A (82%) and eIF4E-1B (66%). eIF4E-1B, originally termed eIF4E(L), has been reported previously as the zebrafish eIF4E-1 counterpart (Fahrenkrug, S. C., Dahlquist, M. O., Clark, K., and Hackett, P. B. (1999) Differentiation 65, 191-201; Fahrenkrug, S. C., Joshi, B., Hackett, P. B., and Jagus, R. (2000) Differentiation 66, 15-22). Sequence comparisons suggest that the two genes probably evolved from a duplication event that occurred during vertebrate evolution. eIF4E-1A is expressed ubiquitously in zebrafish, whereas expression of eIF4E-1B is restricted to early embryonic development and to gonads and muscle of the tissues investigated. The ability of these two zebrafish proteins to bind m(7)GTP, eIF4G, and 4E-BP, as well as to complement yeast conditionally deficient in functional eIF4E, show that eIF4E-1A is a functional equivalent of human eIF4E-1. Surprisingly, although eIF4E-1B possesses all known residues thought to be required for interaction with the cap structure, eIF4G, and 4E-BPs, it fails to interact with any of these components, suggesting that this protein serves a role other than that assigned to eIF4E.  相似文献   

7.
The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.  相似文献   

8.
Joshi B  Robalino J  Schott EJ  Jagus R 《BioTechniques》2002,33(2):392-3, 395-6, 398 passim
Evidence from several laboratories and sequencing projects has revealed that many eukaryotes contain multiple proteins related in sequence to the human mRNA-cap binding translation initiation factor 4E (eIF4E-1). Although some have been shown to bind cap-analogues, whether all eIF4E-family members function as translation initiation factors is unclear Furthermore, the existence of proteins related to eIF4E complicates the identification of the translation factor by sequence-based approaches. Methods to assess the functionality of eIF4E are limited. The most informative, single assay to identify proteins with eIF4E-activity is that of rescue of the lethal disruption of the single Saccharomyces cerevisiae eIF4E gene. We have developed a simplified yeast eIF4E "knockout-and-rescue" system, the characteristics of which are (i) a haploid system that obviates the needfor a "plasmid shuffle", (ii) a simple G418-based selection for yeast lacking a chromosomal eIF4E gene, and (iii) a glucose-based selection to deplete the strain of a human eIF4E-1 substitute and to assess the eIF4E-activity of an untested elF4E-family member In this form, the yeast eIF4E knockout-and-rescue system becomes a tool available to any laboratory experienced in the selection of microbial strains with antibiotics and standard media for the identification and isolation of cDNAs encoding proteins with eIF4E-activity.  相似文献   

9.
10.
11.
The cap-binding complex elF4F is involved in ribosome recruitment during the initiation phase of translation and is composed of three subunits: elF4E, -4G, and -4A. The m7GpppN cap-binding subunit eIF4E binds the N-terminal region of eIF4G, which in turn contacts eIF4A through its central and C-terminal regions. We have previously shown, through a tethered-function approach in transfected HeLa cells, that the binding of eIF4G to an mRNA is sufficient to drive productive translation (De Gregorio et al., EMBO J, 1999, 18:4865-4874). Here we exploit this approach to assess which of the other subunits of elF4F can exert this function. eIF4AI or mutant forms of eIF4E were fused to the RNA-binding domain of the lambda phage antiterminator protein N to generate the chimeric proteins lambda4A, lambda4E-102 (abolished cap binding), and lambda4E-73-102 (impaired binding to both, the cap and eIF4G). The fusion proteins were directed to a bicistronic reporter mRNA by means of interaction with a specific lambda-N binding site (boxB) in the intercistronic space. We show that lambda4E-102, but neither the double mutant lambda4E-73-102 nor lambda4A, suffices to promote translation of the downstream gene in this assay. Coimmunoprecipitation analyses confirmed that all lambda-fusion proteins are capable of interacting with the appropriate endogenous eIF4F subunits. These results reveal that eIF4E, as well as eIF4G, can drive ribosome recruitment independent of a physical link to the cap structure. In spite of its interaction with endogenous eIF4G, lambda4A does not display this property. eIF4A thus appears to supply an essential auxiliary function to eIF4F that may require its ability to cycle into and out of this complex.  相似文献   

12.
13.
Control of gene expression at the translational level is crucial for many developmental processes. The mRNA cap-binding protein, eIF4E, is a key player in regulation of translation initiation; appropriate levels of eIF4E are essential for normal cell-cycle regulation and tissue differentiation. The observation that eIF4E levels are elevated during gametogenesis in several organisms suggests that eIF4E might have a specific role in gamete formation as well. We show that one of the five isoforms of C. elegans eIF4E, IFE-1, is enriched in the germline and is a component of germ granules (P granules). The association of IFE-1 with P granules requires the P-granule protein PGL-1. In vitro PGL-1 interacts directly with IFE-1, but not with the other four isoforms of eIF4E. Analysis of animals depleted of IFE-1 by RNAi shows that IFE-1 is required for spermatogenesis, specifically for efficient progression through the meiotic divisions and for the production of functional sperm, in both hermaphrodites and males. The requirement for IFE-1 is highly sensitive to temperature. IFE-1 is not required for oogenesis, as ife-1(RNAi) hermaphrodites produce viable progeny when normal sperm are supplied. Consistent with a primary role in spermatogenesis, ife-1 mRNA levels are highest in regions of the gonad undergoing spermatogenesis. Our results suggest that C. elegans spermatogenesis requires either this specific isoform of eIF4E or an elevated level of eIF4E.  相似文献   

14.
15.
Eukaryotic translation initiation factor 4E (eIF4E) binds to the cap structure at the 5' end of mRNAs and is a critical target for the control of protein synthesis. eIF4E is phosphorylated in many systems in response to extracellular stimuli, but biochemical evidence to date has been equivocal as to the biological significance of this modification. Here we use a genetic approach to this problem. We show that, in Drosophila melanogaster, homozygous eIF4E mutants arrest growth during larval development. In Drosophila eIF4EI, Ser251 corresponds to Ser209 of mammalian eIF4E, which is phosphorylated in response to extracellular signals. We find that, in vivo, eIF4EI Ser251 mutants cannot incorporate labeled phosphate. Furthermore, transgenic Drosophila organisms expressing eIF4E(Ser251Ala) in an eIF4E mutant background have reduced viability. Escapers develop more slowly than control siblings and are smaller. These genetic data provide evidence that eIF4E phosphorylation is biologically significant and is essential for normal growth and development.  相似文献   

16.
Importin-alpha proteins do not only mediate the nuclear import of karyophilic proteins but also regulate spindle assembly during mitosis and the assembly of ring canals during Drosophila oogenesis. Three importin-alpha genes are present in the genome of Drosophila. To gain further insights into their function we analysed their expression during spermatogenesis by using antibodies raised against each of the three Importin-alpha proteins identified in Drosophila, namely, Imp-alpha1, -alpha2, and -alpha3. We found that each Imp-alpha is expressed during a specific and limited period of spermatogenesis. Strong expression of Imp-alpha2 takes place in spermatogonial cells, persists in spermatocytes, and lasts up to the completion of meiosis. In growing spermatocytes, the intracellular localisation of Imp-alpha2 appears to be dependent upon the rate of cell growth. In pupal testes Imp-alpha2 is essentially present in the spermatocyte nucleus but is localised in the cytoplasm of spermatocytes from adult testes. Both Imp-alpha1 and -alpha3 expression initiates at the beginning of meiosis and ends during spermatid differentiation. Imp-alpha1 expression extends up to the onset of the elongation phase, whereas that of Imp-alpha3 persists up to the completion of nuclear condensation when the spermatids become individualised. During meiosis Imp-alpha1 and -alpha3 are dispersed in the karyoplasm where they are partially associated with the nuclear spindle, albeit not with the asters. At telophase they aggregate around the chromatin. During sperm head differentiation, both Imp-alpha1 and -alpha3 are nuclear. These data indicate that each Imp-alpha protein carries during Drosophila spermatogenesis distinct, albeit overlapping, functions that may involve nuclear import of proteins, microtubule organisation, and other yet unknown processes.  相似文献   

17.
All eukaryotic mRNAs possess a 5'-cap (m(7)GpppN) that is recognized by a family of cap-binding proteins. These participate in various processes, such as RNA transport and stabilization, as well as in assembly of the translation initiation complex. The 5'-cap of trypanosomatids is complex; in addition to 7-methyl guanosine, it includes unique modifications on the first four transcribed nucleotides, and is thus denoted cap-4. Here we analyze a cap-binding protein of Leishmania, in an attempt to understand the structural features that promote its binding to this unusual cap. LeishIF4E-1, a homolog of eIF4E, contains the conserved cap-binding pocket, similar to its mouse counterpart. The mouse eIF4E has a higher K(as) for all cap analogs tested, as compared with LeishIF4E-1. However, whereas the mouse eIF4E shows a fivefold higher affinity for m(7)GTP than for a chemically synthesized cap-4 structure, LeishIF4E-1 shows similar affinities for both ligands. A sequence alignment shows that LeishIF4E-1 lacks the region that parallels the C terminus in the murine eIF4E. Truncation of this region in the mouse protein reduces the difference that is observed between its binding to m(7)GTP and cap-4, prior to this deletion. We hypothesize that variations in the structure of LeishIF4E-1, possibly also the absence of a region that is homologous to the C terminus of the mouse protein, promote its ability to interact with the cap-4 structure. LeishIF4E-1 is distributed in the cytoplasm, but its function is not clear yet, because it cannot substitute the mammalian eIF4E in a rabbit reticulocyte in vitro translation system.  相似文献   

18.
Eukaryotic initiation factor 4E (eIF4E) controls a crucial step of translation initiation and is critical for cell growth . Biochemical studies have shown that it undergoes a regulated phosphorylation by the MAP-kinase signal-integrating kinases Mnk1 and Mnk2 . Although the role of eIF4E phosphorylation in mammalian cells has remained elusive , recent work in Drosophila has established that it is required for growth and development . Here, we demonstrate that a previously identified Drosophila kinase called Lk6 is the functional homolog of mammalian Mnk kinases. We generated lk6 loss-of-function alleles and found that eIF4E phosphorylation is dramatically reduced in lk6 mutants. Importantly, lk6 mutants exhibit reduced viability, slower development, and reduced adult size, demonstrating that Lk6 function is required for organismal growth. Moreover, we show that uniform lk6 expression rescues the lethality of eIF4E hypomorphic mutants in an eIF4E phosphorylation site-dependent manner and that the two proteins participate in a common complex in Drosophila S2 cells, confirming the functional link between Lk6 and eIF4E. This work demonstrates that Lk6 exerts a tight control on eIF4E phosphorylation and is necessary for normal growth and development.  相似文献   

19.
We have identified the initiation factor 4A (eIF4A) in a two-dimensional protein database of Drosophila wing imaginal discs. eIF4A, a member of the DEAD-box family of RNA helicases, forms the active eIF4F complex that in the presence of eIF4B and eIF4H unwinds the secondary structure of the 5'-UTR of mRNAs during translational initiation. Two-dimensional gel electrophoresis and microsequencing allowed us to purify eIF4A, and generate specific polyclonal antibodies. A combination of immunoblotting and labelling with [(35)S]methionine + [(35)S]cysteine revealed the existence of a single eIF4A isoform encoded by a previously reported gene that maps to chromosome 2L at 26A7-9. Expression of this gene yields two mRNA species, generated by alternative splicing in the 3'-untranslated region. The two mRNAs contain the same open reading frame and produce the identical eIF4A protein. No expression was detected of the eIF4A-related gene CG7483. We detected eIF4A protein expression in the wing imaginal discs of several Drosophila species, and in haltere, leg 1, leg 2, leg 3, and eye-antenna imaginal discs of D. melanogaster. Examination of eIF4A in tumor suppressor mutants showed significantly increased (> 50%) expression in the wing imaginal discs of these larvae. We observed ubiquitous expression of eIF4A mRNA and protein during Drosophila embryogenesis. Yeast two-hybrid analysis demonstrated the in vivo interaction of Drosophila eIF4G with the N-terminal third of eIF4A.  相似文献   

20.
Translational control is a critical process in the spatio-temporal restriction of protein production. In Drosophila oogenesis, translational repression of oskar (osk) RNA during its localization to the posterior pole of the oocyte is essential for embryonic patterning and germ cell formation. This repression is mediated by the osk 3' UTR binding protein Bruno (Bru), but the underlying mechanism has remained elusive. Here, we report that an ovarian protein, Cup, is required to repress precocious osk translation. Cup binds the 5'-cap binding translation initiation factor eIF4E through a sequence conserved among eIF4E binding proteins. A mutant Cup protein lacking this sequence fails to repress osk translation in vivo. Furthermore, Cup interacts with Bru in a yeast two-hybrid assay, and the Cup-eIF4E complex associates with Bru in an RNA-independent manner. These results suggest that translational repression of osk RNA is achieved through a 5'/3' interaction mediated by an eIF4E-Cup-Bru complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号