首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine heart troponin T was hydrolyzed at the single cysteine residue. This procedure resulted in two peptides--a short N-terminal peptide (40-50 amino acid residues) and a long C-terminal peptide (240 amino acid residues). The C-terminal peptide was purified to homogeneity by ion-exchange chromatography; its properties were compared to those of intact troponin T. Data from circular dichroism spectroscopy suggest that the short N-terminal peptide cleavage was unaccompanied by any conspicuous changes in the secondary structure of the large C-terminal peptide of troponin T. Unlike intact troponin T, its C-terminal peptide can interact with troponin C in the presence of Ca2+. Data from affinity chromatography demonstrated that troponin I and tropomyosin more strongly interacted with native troponin T than with its C-terminal peptide. It is concluded that the short N-terminal peptide (40-50 residues) plays an essential role in cardiac troponin T interaction with troponin and tropomyosin components.  相似文献   

2.
We have quantitated the interactions of two rabbit skeletal troponin C fragments with troponin I and the troponin I inhibitory peptide. The calcium binding properties of the fragments and the ability of the fragments to exert control in the regulated actomyosin ATPase assay have also been studied. The N- and C-terminal divalent metal binding domains of rabbit skeletal troponin C, residues 1-97 and residues 98-159, respectively, were prepared by specific cleavage at cysteine-98 and separation by gel exclusion chromatography. Both of the troponin C fragments bind calcium. The calcium affinity of the weak sites within the N-terminal fragment is about an order of magnitude greater than is reported for these sites in troponin C, suggesting interaction between the calcium-saturated strong sites and the weak sites. Stoichiometric binding (1:1) of the troponin I inhibitory peptide to each fragment and to troponin C increased the calcium affinities of the fragments and troponin C. Complex formation was detected by fluorescence quenching or enhancement using dansyl-labeled troponin C (and fragments) or tryptophan-labeled troponin I inhibitory peptide. The troponin C fragments bind to troponin I with 1:1 stoichiometry and approximately equal affinities (1.6 x 10(6) M-1) which are decreased 4-fold in the presence of magnesium versus calcium. These calcium effects are much smaller than is observed for troponin C. The summed free energies for the binding of the troponin C fragments to troponin I are much larger than the free energy of binding troponin C. This suggests a large positive interaction free energy for troponin C binding to troponin I relative to the fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. Bovine cardiac-muscle troponin C was digested at cysteine residues 35 and 84, and the C-terminal peptide (residues 84-161) was isolated. 2. The C-terminal peptide contains two Ca2+-binding sites. These sites bind Ca2+ with a binding constant of 2.0 X 10(8) M-1. In the presence of 2 mM-Mg2+ the binding constant for Ca2+ is decreased to 3.7 X 10(7) M-1. The corresponding constants for native troponin C are 5.9 X 10(7) M-1. and 2.9 X 10(7) M-1 respectively. 3. Electrophoretic mobility of the C-terminal peptide is increased in the presence of 0.1 mM-CaCl2 as compared with the mobility in the presence of 2mM-EDTA. The same phenomenon was observed when electrophoresis was performed in the presence of 6 M-urea or 0.1% sodium dodecyl sulphate. 4. When saturated with Ca2+, the C-terminal peptide forms complexes with bovine cardiac-muscle troponin I both in the absence and in the presence of 6 M-urea. This complex is dissociated on removal of Ca2+. 5. The data suggest that the C-terminal peptide of troponin C contains two Ca2+/Mg2+-binding sites and interacts with troponin I. Thus, despite the 30% difference in amino acid composition, the properties of bovine cardiac-muscle troponin C C-terminal peptide are similar to those of rabbit skeletal-muscle troponin C C-terminal peptide.  相似文献   

4.
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.  相似文献   

5.
1. A series of defined peptides which span the complete sequence were produced from troponin I isolated from white skeletal muscle of the rabbit. 2. Two peptides, CF1 (residues 64-133) and CN4 (residues 96-117) inhibited the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition was potentiated by tropomyosin and the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition, unlike that of troponin I and peptides derived from it, was not potentiated by tropomyosin. 4. The most active inhibitor, peptide CN4, was 45-75% as effective as troponin I when compared on a molar basis. The inhibitory peptide, CN4, and also whole troponin I were shown by affinity chromatography to interact specifically with actin. 5. A strong interaction with troponin C was demonstrated with peptide CF2 (residues 1-47), from the N-terminal region of troponin I. Somewhat weaker interactions were shown with peptides CN5 (residues 1-21) and with the inhibitory peptide CN4. 6. The significance of these interactions for the mechanisms of action of troponin I is discussed.  相似文献   

6.
Using chromatography and preparative polyacrylamide gel electrophoresis, tryptic peptides TP 1 (residues 47-83), TP 2 (residues 84-118) and TP 3 (residues 119-161) were isolated in a highly homogeneous state from cardiac troponin C. Peptides TP 1, TP 2 and TP 3 were found to contain isolated cation-binding sites II, III and IV of cardiac troponin C. The interaction of these peptides with troponins I and T was studied. It was found that only peptide TP 2 could interact with troponin I. Neither of the peptides isolated interacted with troponin T. The cation-binding properties and structural peculiarities of peptide TP 1 were investigated. It was shown that despite its small size (37 amino acid residues), peptide TP 1 retained its ability to bind Ca2+ which caused conformational changes in the peptide structure. This was accompanied by changes in the electrophoretic mobility and absorption of TP 1 on phenyl-Sepharose.  相似文献   

7.
Tumor extracellular matrix has abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. In this work, we demonstrated effective MR cancer molecular imaging with a small molecular peptide targeted Gd-DOTA monoamide complex as a targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma. We performed the experiment of evaluating the effectiveness of the agent for non-invasive detection of prostate tumor with MRI in a mouse orthotopic PC-3 prostate cancer model. The targeted contrast agent was effective to produce significant tumor contrast enhancement at a low dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for MR molecular imaging of prostate tumor.  相似文献   

8.
Time resolved fluorescence anisotropy and sedimentation velocity has been used to study the rotational and translational hydrodynamic behavior of two mutants of chicken skeletal troponin C bearing a single tryptophan residue at position 78 or 154 in the metal-free-, metal-bound-, and troponin I peptide (residues 96-116 of troponin I)-ligated states. The fluorescence anisotropy data of both mutants were adequately described by two rotational correlation times, and these are compared with the theoretically expected values based on the rotational diffusion of an idealized dumbbell. These data imply that the motion of the N- and C-terminal domains of troponin C are independent. They also suggest that in the metal-free, calcium-saturated and calcium-saturated troponin I peptide-bound states, troponin C is elongated, having an axial ratio of 4-5. Calcium or magnesium binding to the high affinity sites alone reduces the axial ratio to approximately 3. However, with calcium bound to sites III and IV and in the presence of a 1:1 molar ratio of the troponin I peptide, troponin C is approximately spherical. The metal ion and troponin I peptide-induced length changes in troponin C may play a role in the mechanism by which the regulatory function of troponin C is effected.  相似文献   

9.
1. The CNBr digest of troponin C from rabbit fast skeletal muscle was shown to possess many of the functional properties of the whole troponin C molecule. 2. A peptide corresponding to residues 83-134 was isolated, which forms a Ca(2+-dependent complex with troponin I and neutralizes the inhibition by troponin I of the Mg(2+-stimulated adenosine triphosphatase of desensitized actomyosin. 3. The peptide inhibits the phosphorylation of fast-skeletal-muscle, but not cardiac-muscle, troponin I, by 3' :5'-cyclic AMP-dependent protein kinase. In this property it was as effective as whole skeletal-muscle troponin C when compared on a molar basis. 4. Biological activity was also present in other fractions obtained from the CNBr digest. 5. By gel filtration and affinity chromatography of the whole CNBr digest of troponin C, two peptides, one of which was identified as representing residues 83-134, were shown to form Ca(2+-dependent complexes with troponin I. 6. The significance of these findings for the mechanism of interaction of troponin C and troponin I is discussed.  相似文献   

10.
1. The p.m.r. spectra of the larger CNBr-cleavage peptides of troponin I from rabbit fast-twitch skeletal muscle corresponded largely to those of fairly flexible solution structures. 2. On addition of troponin C to each of the CNBr-cleavage peptides in turn, perturbations of side chains were noted only for peptides CN5 (residues 1-21) and CN4 (residues 96-116). 3. In the presence of Ca2+, troponin C induced perturbations of the side chains of threonine-11, alanine, isoleucine and arginine residues of peptide CN5. 4. In the presence of Ca2+, troponin C induced perturbations of the side chains of phenylalanine, lysine and leucine residues of peptide CN4. 5. Irrespective of the presence or absence of Ca2+, specific interaction with actin was observed only with peptide CN4. In this case the side chains of arginine residues were perturbed. 6. It is concluded that actin interacts with the C-terminal region of peptide CN4, whereas troponin C interacts with the N-terminal region of peptide CN4 and with peptide CN5.  相似文献   

11.
A new mRNA targeting contrast agent consisting of three main functional domains, (i) gadolinium based magnetic resonance reporter part, (ii) antisense peptide nucleic acids targeted to mRNA, and (iii) cholesterol as the delivery vector, was developed and synthesized. The new contrast agent showed efficient cellular uptake and significant contrast enhancement at very low labeling concentrations (0.5 μM). However, after uptake into cells the agent was located predominantly in endosomes like a similar cell penetrating peptide conjugated probe. Our results indicate that this newly developed contrast agent could be used for the labeling of cells for optical as well as magnetic resonance imaging.  相似文献   

12.
Troponin I is a specific and sensitive clinical biomarker for myocardial injury. In this study we have used polyvalent phage display to isolate unique linear peptide motifs which recognize both the human and rat homologs of troponin I. The peptide specific for human troponin I has a sequence of FYSHSFHENWPS and the peptide specific for the rat troponin I has a sequence of FHSSWPVNGSTI. Enzyme‐linked immunosorbent assays (ELISAs) were used to evaluate the binding interactions, and the two phage‐displayed peptides exhibited some cross‐reactivity, but they were both more specific for the troponin I homolog they were selected against. The binding affinities of the phage‐displayed peptides were decreased by the presence of complex tissue culture media (MEM), and the addition of 10% calf serum further interfered with the binding of the target proteins. Kinetic indirect phage ELISAs revealed that both troponin I binding peptides were found to have nanomolar affinities for the troponin proteins while attached to the phage particles. To our knowledge, this is the first example of isolation and characterization of troponin I binders using phage display technology. These new peptides may have potential utility in the development of new clinical assays for cardiac injury as well as in monitoring of cardiac cells grown in culture. Biotechnol. Bioeng. 2010. 105: 678–686. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Troponin from the myocardium and skeletal muscles: structure and properties   总被引:1,自引:0,他引:1  
The literary and experimental data on the structure and properties of cardiac and skeletal muscle troponin are reviewed. The cation--binding sites of cardiac and skeletal muscle troponin C are distinguished by specificity; the sites localized in the C-terminal part of the protein molecule can bind both Ca2+ and Mg2+, whereas the sites localized at the N-end specifically bind Ca2+. The use of bifunctional reagents revealed a number of helical sites within the structure of cardiac troponin C (residues 84-92 and 150-158) and of skeletal muscle troponin C (residues 90-98 and 125-136). A comparison of experimental data with the results of an X-ray analysis testifies to the presence in the central part of the troponin C molecule of a long alpha-helical sequence responsible for troponin C interaction with the inhibiting peptide of troponin I. The efficiency of interaction of troponin components depends on Ca2+ concentration; the integrity of the overall troponin complex is mainly provided for by troponin C interaction with troponin I and by troponin I interaction with troponin T. The interaction between troponins T and C is relatively weak, especially in the case of cardiac troponin components. Both skeletal and cardiac muscles synthesize several troponin T isoforms differing in length and amino acid composition of N-terminal 40-60 member peptides. Troponin T isoforms can undergo phosphorylation by several protein kinases. The single site of troponin T which exists in a phosphorylated state in vivo (residue Ser-1) undergoes phosphorylation by specific protein kinase (troponin T kinase) related to casein kinases II. It was assumed that the phosphorylation of Ser-1 residue of troponin T as well as the synthesis of troponin T isoforms differing in the structure of the N-terminal peptide, provides for the regulation of interaction between two neighbouring tropomyosin molecules.  相似文献   

14.
We have used two-dimensional 1H nuclear magnetic resonance spectroscopy to determine the structure of the synthetic inhibitory peptide N alpha-acetyl TnI(104-115) amide bound to calcium-saturated skeletal troponin C (TnC). Conformational changes in the peptide induced by the formation of the troponin I (TnI) peptide-TnC complex were followed by the study of the transferred nuclear Overhauser effect, a technique that allows one to determine the structure of a ligand bound to a macromolecule. The structure of the bound TnI peptide reveals an amphiphilic alpha-helix, distorted around the two central proline residues. The central bend in the peptide functions to bring the residues on the hydrophobic face into closer proximity with each other, thereby forming a small hydrophobic pocket. The hydrophilic, basic residues extend off the opposite face of the peptide. Hydrophobic surfaces on TnC that become exposed upon binding of calcium are involved in the binding of the TnI peptide, but electrostatic interactions also contribute to the strength of the interaction. The role of amphiphilic helices in the targeting of calcium-binding proteins such as troponin C will be discussed.  相似文献   

15.
X-ray computed tomography (XCT) has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide (), has been used in several biological studies to augment the use of XCT scanning. Recently was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6–7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.  相似文献   

16.
Bovine cardiac troponin C was cleaved at residues cysteine-35 and cysteine-84. Three peptides, N-terminal (residues 1-34), central (residues 35-83) and C-terminal (residues 84-161), of cardiac troponin C were obtained in a homogeneous state. Saturation of troponin C or its C-terminal peptide with Ca2+ or Mg2+ is accompanied by an increase in the ellipticity at 222 nm in the c.d. spectrum. The half-maximal changes in the ellipticity of troponin C were observed at 32 nM-Ca2+ or 56 microM-Mg2+. The corresponding values for the C-terminal peptide are 7.1 nM for Ca2+ and 4.5 microM for Mg2+. The ellipticity of the central peptide (residues 35-83) containing the second cation-binding site was decreased on saturation with Ca2+. The half-maximal changes in the ellipticity occur at 80 microM-Ca2+. Study of the c.d. spectra suggests that the alpha-helices flanking the second cation-binding site of cardiac troponin C exist independently of Ca2+. Saturation of the third and fourth sites with these cations is associated with a considerable increase in the alpha-helix content, probably due to the formation of an alpha-helix flanking the third site on the N-terminus.  相似文献   

17.
We have synthesized four oligopeptides that are structural analogues of a low-affinity Ca2+-specific binding site (site II) of rabbit skeletal troponin C. One analogue (peptide 3) was a dodecapeptide with a sequence corresponding to the 12-residue Ca2+-binding loop (residues 63-74 in troponin C), two (peptides 4 and 5) were 23-residue in length, corresponding to residues 52-74 of the protein, and the fourth (peptide 6) was a 25-residue peptide corresponding to residues 50-74. All four peptides had one amino acid substitution within the 12-residue binding loop in which phenylalanine at position 10 was replaced by tyrosine to provide a marker for spectroscopic studies. In addition, peptides 3 and 4 each had a second substitution within the binding loop where glycine at position 6 was replaced by alanine. The second substitution was motivated by the conservation of glycine at the position in the Ca2+-binding loops of all four Ca2+-binding sites in troponin C. The peptides were characterized by their intrinsic fluorescence, ability to enhance the emission of bound Tb3+, affinity for Ca2+ and Tb3+, and circular dichroism. The affinity for Ca2+ was in the range 10-10(2) M-1, and the affinity for Tb3+ was in the range 10(4)-10(5) M-1. The binding constants of the longer peptides were several-fold larger than that of the dodecapeptide. With peptides 4 and 5, substitution of glycine by alanine at position 6 within the 12-residue loop decreased the affinity for Ca2+ by a factor of four, but had little effect on the affinity for Tb3+. However, the mean residue ellipticity of peptide 4 was substantially higher than that of peptide 5. Since peptide 4 differs from peptide 5 only in the substitution of glycine at position 6 in the loop segment, the conservation of glycine at that position may serve a role in providing a suitable secondary structure of the binding sites for interaction with troponin I. Peptides 4 and 6, when present in a large excess, mimic troponin C in regulating fully reconstituted actomyosin ATPase by showing partial calcium sensitivity and activation of the ATPase. Since these peptides are the smallest peptides containing the Ca2+-binding loop of site II, their biological activity suggests that a Ca2+-dependent binding site of troponin C for troponin I could be as short as the segment comprising residues 52-62.  相似文献   

18.
To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial ‘design of experiments’ approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.  相似文献   

19.
Striated muscles are relaxed under low Ca(2+) concentration conditions due to actions of the thin filament protein troponin. To investigate this regulatory mechanism, an 11-residue segment of cardiac troponin I previously termed the inhibitory peptide region was studied by mutagenesis. Several mutant troponin complexes were characterized in which specific effects of the inhibitory peptide region were abrogated by replacements of 4-10 residues with Gly-Ala linkers. The mutations greatly impaired two of troponin's actions under low Ca(2+) concentration conditions: inhibition of myosin subfragment 1 (S1)-thin filament MgATPase activity and cooperative suppression of myosin S1-ADP binding to thin filaments with low myosin saturation. Inhibitory peptide replacement diminished but did not abolish the Ca(2+) dependence of the ATPase rate; ATPase rates were at least 2-fold greater when Ca(2+) rather than EGTA was present. This residual regulation was highly cooperative as a function of Ca(2+) concentration, similar to the degree of cooperativity observed with WT troponin present. Other effects of the mutations included 2-fold or less increases in the apparent affinity of the thin filament regulatory Ca(2+) sites, similar decreases in the affinity of troponin for actin-tropomyosin regardless of Ca(2+), and increases in myosin S1-thin filament ATPase rates in the presence of saturating Ca(2+). The overall results indicate that cooperative myosin binding to Ca(2+)-free thin filaments depends upon the inhibitory peptide region but that a cooperatively activating effect of Ca(2+) binding does not. The findings suggest that these two processes are separable and involve different conformational changes in the thin filament.  相似文献   

20.
Troponin is a pivotal regulatory protein that binds Ca(2+) reversibly to act as the muscle contraction on-off switch. To understand troponin function, the dynamic behavior of the Ca(2+)-saturated cardiac troponin core domain was mapped in detail at 10 °C, using H/D exchange-mass spectrometry. The low temperature conditions of the present study greatly enhanced the dynamic map compared with previous work. Approximately 70% of assessable peptide bond hydrogens were protected from exchange sufficiently for dynamic measurement. This allowed the first characterization by this method of many regions of regulatory importance. Most of the TnI COOH terminus was protected from H/D exchange, implying an intrinsically folded structure. This region is critical to the troponin inhibitory function and has been implicated in thin filament activation. Other new findings include unprotected behavior, suggesting high mobility, for the residues linking the two domains of TnC, as well as for the inhibitory peptide residues preceding the TnI switch helix. These data indicate that, in solution, the regulatory subdomain of cardiac troponin is mobile relative to the remainder of troponin. Relatively dynamic properties were observed for the interacting TnI switch helix and TnC NH(2)-domain, contrasting with stable, highly protected properties for the interacting TnI helix 1 and TnC COOH-domain. Overall, exchange protection via protein folding was relatively weak or for a majority of peptide bond hydrogens. Several regions of TnT and TnI were unfolded even at low temperature, suggesting intrinsic disorder. Finally, change in temperature prominently altered local folding stability, suggesting that troponin is an unusually mobile protein under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号