首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil-based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non-Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.  相似文献   

2.
3.
Fan Z  Wu W  Hildebrand A  Kasuga T  Zhang R  Xiong X 《PloS one》2012,7(2):e31693
The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.  相似文献   

4.
With the exhaustion of fossil fuels and with the environmental issues they pose, utilization of abundant lignocellulosic biomass as a feedstock for biofuels and bio-based chemicals has recently become an attractive option. Lignocellulosic biomass is primarily composed of cellulose, hemicellulose, and lignin and has a very rigid and complex structure. It is accordingly much more expensive to process than starchy grains because of the need for extensive pretreatment and relatively large amounts of cellulases for efficient hydrolysis. Efficient and cost-effective methods for the production of biofuels and chemicals from lignocellulose are required. A consolidated bioprocess (CBP), which integrates all biological steps consisting of enzyme production, saccharification, and fermentation, is considered a promising strategy for reducing production costs.  相似文献   

5.
木质纤维素预处理抑制物产生及脱除方法的研究进展   总被引:1,自引:0,他引:1  
利用纤维素酶将木质纤维素降解成可发酵性糖,然后发酵生产氢气、乙醇、丁醇等生物燃料及高附加值产品,是当今全球研究的热点。预处理是生物质转化过程中至关重要的步骤,而预处理过程中产生的抑制物对木质纤维素后续的酶解和发酵微生物有负面影响。因此了解预处理方法及其过程中产生的抑制物及脱除方法是能否高效转化生物质的基础。文中首先介绍了木质纤维素常用的两类预处理方法即化学法和物理化学法。随后阐述了不同抑制物的产生及其抑制机制,并重点介绍了多种脱毒方法。最后展望了脱除木质纤维素预处理抑制物的研究趋势:应用交联聚乙烯亚胺和金属有机骨架化合物等新型材料脱除抑制物或通过基因工程、代谢工程技术等构建抑制物耐受性菌株等。  相似文献   

6.
Lignocellulose containing 62% cellulose was prepared from corn residue by dilute acid hydrolysis using 5% H(2)SO(4) at 90 degrees C. The lignocellulose was then treated with a cellulose solvent consisting of a ferric sodium tartrate complex in 1.5N sodium hydroxide at levels ranging from 4:1 to 12:1 (solvent volume: corn residue lignocellulose) or a 1.5N sodium hydroxide solution alone. Subsequent hydrolysis with cellulase enzymes from Trichoderma reesei gave cellulose conversions which were two to three times higher than untreated lignocellulose (30%) and approached 90% conversion after 24 h in the best cases. It was found that increasing cellulase enzyme levels from 3.74 lU/g lignocellulose to 7.71 lU/g lignocellulose increased cellulose conversion by 50% at all pretreatment conditions, while an increase from 7.71 to 10.1 lU/g gave only an additional 5-10% increase. Pretreatment with sodium hydroxide resulted in 5-25% lower conversions than observed for cellulose treated with the solvent, depending on enzyme levels and treatment levels. At high enzyme levels, sodium hydroxide pretreatment is almost as effective in enhancing cellulose conversion after 24 h as is pretreatment using the cellulose solvent.  相似文献   

7.
木质纤维素预处理技术研究进展   总被引:31,自引:0,他引:31  
详细评述了木质纤维素的预处理工艺研究进展,特别是浓酸低温水解-酸回收工艺、稀酸二阶段水解工艺、金属离子在稀酸水解过程中的助催化作用以及水蒸汽爆裂、氨纤维爆裂、CO2爆裂、酶催化水解等方法的研究进展情况。木质纤维素原料预处理技术发展为发酵生产乙醇技术的研究开发奠定了坚实基础。  相似文献   

8.
本研究尝试将氨基磺酸应用于甘蔗渣预处理,探究其作为酸预处理试剂对甘蔗渣成分和酶解的影响。氨基磺酸预处理最优条件为浓度3%,温度121℃,预处理1 h。在该条件下,甘蔗渣的固体回收率为64.45%,半纤维素和木质素去除率分别为70.81%和25.10%,纤维素损失率仅7.56%。与硫酸、盐酸预处理相比,氨基磺酸的半纤维素和木质素去除率不如硫酸、盐酸预处理,但固体回收率更高,纤维素损失率低,能保留更多纤维素有效成分。进一步酶解显示,氨基磺酸预处理的纤维素转化率高于硫酸、盐酸预处理。氨基磺酸作为一种新的酸预处理试剂,在木质纤维素降解上有良好应用前景。  相似文献   

9.
Enzymatic saccharification of cellulose is a key step in conversion of plant biomass to advanced biofuel and chemicals. Many substrate-related factors affect saccharification. Rather than examining the role of each individual factor on overall saccharification efficiency, this study examined how each factor affects the three basic processes of a heterogeneous biochemistry reaction: (1) substrate accessibility to cellulose—the roles of component removal and size reduction by pretreatments, (2) substrate and cellulase reactivity limited by component inhibition, and (3) reaction conditions—substrate-specific optimization. Our in-depth analysis of published literature work, especially those published in the last 5 years, explained and reconciled some of the conflicting results in literature, especially the relative importance of hemicellulose vs. lignin removal and substrate size reduction on enzymatic saccharification of lignocelluloses. We concluded that hemicellulose removal is more important than lignin removal for creating cellulase accessible pores. Lignin removal is important when alkaline-based pretreatment is used with limited hemicellulose removal. Partial delignification is needed to achieve satisfactory saccharification of lignocelluloses with high lignin content, such as softwood species. Rather than using passive approaches, such as washing and additives, controlling pretreatment or hydrolysis conditions, such as pH, to modify lignin surface properties can be more efficient for reducing or eliminating lignin inhibition to cellulase, leading to improved lignocellulose saccharification.  相似文献   

10.

Background

The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.

Results

We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel?) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase.

Conclusions

Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.  相似文献   

11.
Xu J  Wang Z  Cheng JJ 《Bioresource technology》2011,102(17):7613-7620
Bermuda grass is a promising feedstock for the production of fuel ethanol in the Southern United States. This paper presents a review of the significant amount of research on the conversion of Bermuda grass to ethanol and a brief discussion on the factors affecting the biomass production in the field. The biggest challenge of biomass conversion comes from the recalcitrance of lignocellulose. A variety of chemical, physico-chemical, and biological pretreatment methods have been investigated to improve the digestibility of Bermuda grass with encouraging results reported. The subsequent enzymatic hydrolysis and fermentation steps have also been extensively studied and effectively optimized. It is expected that the development of genetic engineering technologies for the grass and fermenting organisms has the potential to greatly improve the economic viability of Bermuda grass-based fuel ethanol production systems. Other energy applications of Bermuda grass include anaerobic digestion for biogas generation and pyrolysis for syngas production.  相似文献   

12.
Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively.  相似文献   

13.
木质纤维素原料酶水解产乙醇工艺的研究进展   总被引:2,自引:1,他引:1  
木质纤维素原料预处理后,经水解、发酵等过程,可生产乙醇作为清洁燃料,这大大提高了农业和林业废弃物的利用率,减轻了环境污染,并为经济的可持续发展提供了保证。目前木质纤维素酶水解因其具有明显优势而受到重视,被普遍研究和采用。综述了近年来木质纤维素原料的预处理方法、酶与水解技术、发酵工艺以及发酵耦合分离技术的最新研究成果。  相似文献   

14.
In recent years, many biocatalytic processes have been developed for the production of chemicals and pharmaceuticals. In this context, enzyme immobilization methods have attracted attention for their advantages, such as continuous production and increased stability. Here, enzyme immobilization methods and a collection of nitrilases from biodiversity for the conversion of 3-cyanopyridine to nicotinic acid were screened. Substrate conversion over 10 conversion cycles was monitored to optimize the process. The best immobilization conditions were found with cross-linking using glutaraldehyde to modify the PMMA beads. This method showed good activity over 10 cycles in a batch reactor at 30 and 40°C. Finally, production with a new thermostable nitrilase was examined in a continuous packed bed reactor, showing very high stability of the biocatalytic process at a flow rate of 0.12 ml min–1 and a temperature of 50°C. The complete conversion of 3-cyanopyridine was obtained over 30 days of operation. Future steps will concern reactor scale-up to increase the production rate with reasonable pressure drops.  相似文献   

15.
Growing concerns of environmental pollution and fossil resource shortage are major driving forces for bio‐based production of chemicals traditionally from petrochemical industry. Dicarboxylic acids (DCAs) are important platform chemicals with large market and wide applications, and here the recent advances in bio‐based production of straight‐chain DCAs longer than C4 from biological approaches, especially by synthetic biology, are reviewed. A couple of pathways were recently designed and demonstrated for producing DCAs, even those ranging from C5 to C15, by employing respective starting units, extending units, and appropriate enzymes. Furthermore, in order to achieve higher production of DCAs, enormous efforts were made in engineering microbial hosts that harbored the biosynthetic pathways and in improving properties of biocatalytic elements to enhance metabolic fluxes toward target DCAs. Here we summarize and discuss the current advantages and limitations of related pathways, and also provide perspectives on synthetic pathway design and optimization for hyper‐production of DCAs.  相似文献   

16.
17.

Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  相似文献   

18.
Lignocellulose is the most abundant biopolymer in the biosphere. It is inexpensive and therefore considered an attractive feedstock to produce biofuels and other biochemicals. Thermochemical and/or enzymatic pretreatment is used to release fermentable monomeric sugars. However, a variety of inhibitory by-products such as weak acids, furans, and phenolics that inhibit cell growth and fermentation are also released. Phenolic compounds are among the most toxic components in lignocellulosic hydrolysates and slurries derived from lignin decomposition, affecting overall fermentation processes and production yields and productivity. Ligninolytic enzymes have been shown to lower inhibitor concentrations in these hydrolysates, thereby enhancing their fermentability into valuable products. Among them, laccases, which are capable of oxidizing lignin and a variety of phenolic compounds in an environmentally benign manner, have been used for biomass delignification and detoxification of lignocellulose hydrolysates with promising results. This review discusses the state of the art of different enzymatic approaches to hydrolysate detoxification. In particular, laccases are used in separate or in situ detoxification steps, namely in free enzyme processes or immobilized by cell surface display technology to improve the efficiency of the fermentative process and consequently the production of second-generation biofuels and bio-based chemicals.  相似文献   

19.

Background

Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution.

Results

An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk.

Conclusions

A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.
  相似文献   

20.

Xylose is the second most abundant sugar derived from lignocellulose; it is considered less desirable than glucose for fermentation, and strategies that specifically increase xylose utilization in wild type or engineered cells are goals for biofuel production. Issues arise with xylose utilization because of carbohydrate catabolite repression, which is the preferential utilization of glucose relative to xylose in fermentations with both pure and mixed cultures. Taken together the low substrate utilization rates and solvent yields with xylose compared to glucose, many industrial fermentations ignore the xylolytic portion of the reaction in lieu of methods to maintain high glucose. This is shortsighted given the massive potential for xylose generation from a number of sustainable biomass feedstocks, based on utilization of the hemicellulose fraction(s) that enter pretreatment. A number of strategies have been developed in recent years to address xylose utilization and solvent production from xylose in systems with just xylose, or in systems with mixtures of glucose plus xylose, which are more typical of pretreated lignocellulose. The approaches vary in terms of complexity, stability, and ease of introduction to existing fermentation infrastructure (i.e., so-called drop-in fermentation strategies). Some approaches can be considered traditional engineering approaches (e.g., change the reaction conditions), while others are more subtle cellular approaches to eliminate the impacts of catabolite repression. Finally, genetic engineering has been used to increase xylose utilization, although this can be considered a relatively nascent approach compared to manipulations completed to date for glucose utilization.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号