首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylphosphatidylinositol (GPI)-anchored cell wall proteins play an important role in the structure and function of the cell wall in yeast and other fungi. Although the majority of characterized fungal GPI-anchored proteins do in fact localize to the cell wall, some are believed to reside at the plasma membrane and not to traffic significantly to the cell wall. There is evidence suggesting that the amino acids immediately upstream of the site of GPI anchor addition (the omega site) serve as the signal determining whether a GPI protein localizes to the cell wall or to the plasma membrane, although this remains controversial. Here, we examine in detail the functional and biochemical differences between the GPI anchor addition signals of putative cell wall (CW) and plasma membrane (PM) GPI proteins. We find strong evidence for the existence of PM-class and CW-class GPI proteins. We show that the biological function of a GPI-CWP is strongly compromised by changing the GPI anchor signal from a CW-class signal to a PM-class signal. Biochemically, this abrogation of function corresponds to a change in the protein from a cell wall form to a membrane form. To understand better the basis for the difference between the two classes of proteins, we mutated the amino acids upstream of the omega site in a GPI-PM protein and selected mutant proteins that were now localized to the cell wall. We were also able to design simple amino acid mutations in a GPI-CW protein that efficiently redirected the protein to the plasma membrane. These studies make clear that different GPI anchor sequences can have dramatic effects on localization of the proteins and help to define the GPI anchor addition signal sequences that distinguish the PM-class and CW-class GPI proteins.  相似文献   

2.
The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell surface, confirming that the GPI anchor mediates association with specific membrane domains and providing a mechanism for specific signaling. This directed targeting was exploited by coexpressing an external domain-defective protein with a functional protein, both with the CEA GPI anchor. The result was a complete loss of signaling capabilities (through integrin-ECM interaction) and cellular effect (differentiation blockage) of the active protein, which involved an alteration of the size of the microdomains occupied by the active protein. This work clarifies how the GPI anchor can determine protein function, while offering a novel method for its modulation.  相似文献   

3.
The YBR078W/ECM33 gene of Saccharomyces cerevisiae encodes a glycosylphosphatidylinositol (GPI)-attached protein and its disruptant strain exhibited a temperature-sensitive (ts) growth defect. A HA-tagged Ybr078w protein, which complemented the ts growth phenotype of the ybr078wdelta strain, was predominantly located on the plasma membrane by GPI anchoring. To examine the requirement of the GPI anchoring on the plasma membrane for the function, the omega-minus region of Ybr078w was replaced with those of Ydr534c/Fit1 and Ynl327w/Egt2, which are known as GPI-dependent cell wall proteins. The replacement induced the change in localization of the mutant proteins from the plasma membrane to the cell wall and the mutant proteins lost the function to complement the ts cell growth defect of the ybr078wdelta strain. In addition, a similar result was obtained in a mutant protein, where the authentic SKKSK sequence at the omega-5 to omega-1 site of Ybr078w was replaced with a synthetic ISSYS sequence. It is concluded that the GPI anchoring on the plasma membrane is required for the Ybr078w function.  相似文献   

4.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved post-translational modification in eukaryotes. GPI is synthesized and transferred to proteins in the endoplasmic reticulum. GPI-anchored proteins are then transported from the endoplasmic reticulum to the plasma membrane through the Golgi apparatus. GPI-anchor functions as a sorting signal for transport of GPI-anchored proteins in the secretory and endocytic pathways. After GPI attachment to proteins, the structure of the GPI-anchor is remodeled, which regulates the trafficking and localization of GPI-anchored proteins. Recently, genes required for GPI remodeling were identified in yeast and mammalian cells. Here, we describe the structural remodeling and function of GPI-anchors, and discuss how GPI-anchors regulate protein sorting, trafficking, and dynamics. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

5.
Electric fields have been used to manipulate and concentrate glycan-phosphatidyl inositol (GPI)-tethered proteins in planar supported bilayers. Naturally GPI-linked CD48, along with engineered forms of I-Ek and B7-2, in which their transmembrane domains have been genetically replaced with the GPI linkage, were studied. The proteins were labeled with fluorescently tagged antibodies, allowing the electric field-induced behavior to be followed by epifluorescence microscopy. All three protein complexes were observed to migrate toward the cathode with the B7-2 and CD48, each tethered to the membrane by a single GPI linker, moving significantly faster than the I-Ek, which has two GPI linkers. Patterns scratched into the membrane function as barriers to lateral diffusion and were used to isolate the proteins into highly concentrated corrals. All field-induced concentration profiles were completely reversible, indicating that the supported bilayer provides a stable, fluid environment in which GPI-tethered proteins can be manipulated. The ability to electrically control the spatial distribution of membrane-tethered proteins provides new opportunities for the study of biological membranes and the development of membrane-based devices.  相似文献   

6.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved post-translational modification in eukaryotes. In mammalian cells, approximately 150 proteins on the plasma membrane are attached to the cell surface by GPI anchors, which confer specific properties on proteins, such as association with membrane microdomains. The structures of lipid and glycan moieties on GPI anchors are remodeled during biosynthesis and after attachment to proteins. The remodeling processes are critical for transport and microdomain-association of GPI-anchored proteins. Here, we describe the structural remodeling of GPI anchors and genes required for the processes in mammals, yeast, and trypanosomes.  相似文献   

7.
The inositol ring in the glycoinositolphospholipid (GPI) anchor of human decay-accelerating factor (DAF) is unmodified in nucleated cells, whereas it is fatty acid acylated in erythrocytes (Ehu). To assess the effect of this and of the glycerol sn-2-associated acyl substituent on the abilities of DAF to cell membrane incorporate and function, 1) endogenous (physiologically anchored) DAF proteins bearing three- and two-"footed" GPI anchors were purified from Ehu and HeLa cells and 2) synthetic DAF variants bearing alternative one- "footed" anchors (retaining either the sn-1 glycerol- or inositol-associated lipid) were prepared by alkaline hydroxylamine treatment and phosphatidylinositol-specific phospholipase D digestion of Ehu DAF, respectively. The different DAF species were added to antibody-sensitized sheep erythrocytes (EshA) and their abilities to insert into the plasma membranes of the cells and control subsequent complement activation on their surfaces were compared. DAF proteins bearing all four GPI anchor structures adhered to the Esh hemolytic intermediates and inhibited expression of C3 convertase (C4b2a) activity. However, mixing of DAF-treated EshA with untreated EshAC142 and stripping of cell-associated DAF proteins with vesicles showed that only the physiologically anchored proteins remained stably associated with the lipid bilayer and functioned intrinsically. Both three- and two-"footed" Ehu and HeLa DAF proteins exhibited comparable ability to incorporate and function in the intermediates as well as to accumulate to levels 1000-fold higher/cell in Schistosoma mansoni schistosomula. These findings indicate that 1) an intact inositolphospholipid-containing GPI anchor is necessary for stable membrane integration and intrinsic function, 2) endogenous GPI anchors (with either unsubstituted and acylated inositol) incorporate and function with comparable efficiency, and 3) the transfer of either endogenous DAF form can account for the previously described circumvented uptake of human C3b by blood stage schistosomula.  相似文献   

8.
Glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) are a class of lipid anchored proteins expressed on the cell surface of eukaryotes. The potential interaction of GPI‐APs with ordered lipid domains enriched in cholesterol and sphingolipids has been proposed to function in the intracellular transport of these lipid anchored proteins. Here, we examined the biological importance of two saturated fatty acids present in the phosphatidylinositol moiety of GPI‐APs. These fatty acids are introduced by the action of lipid remodeling enzymes and required for the GPI‐AP association within ordered lipid domains. We found that the fatty acid remodeling is not required for either efficient Golgi‐to‐plasma membrane transport or selective endocytosis via GPI‐enriched early endosomal compartment (GEEC)/ clathrin‐independent carrier (CLIC) pathway, whereas cholesterol depletion significantly affects both pathways independent of their fatty acid structure. Therefore, the mechanism of cholesterol dependence does not appear to be related to the interaction with ordered lipid domains mediated by two saturated fatty acids. Furthermore, cholesterol extraction drastically releases the unremodeled GPI‐APs carrying an unsaturated fatty acid from the cell surface, but not remodeled GPI‐APs carrying two saturated fatty acids. This underscores the essential role of lipid remodeling to ensure a stable membrane association of GPI‐APs particularly under potential membrane lipid perturbation.   相似文献   

9.
Conclusion Experimental evidence has accumulated over the past few years to suggest that the GPI protein anchor may play a broad role in the regulation of membrane protein function. The significant changes in the biophysical properties of proteins that are membrane-anchored through GPI in lieu of a hydrophobic transmembrane peptide indicates a variety phobic transmembrane peptide indicates a variety of potential new functions served by the anchor structure itself. Moreover, the number of structural variations within the family of GPI molecules indicates a further opportunity for subspecialization of such anchored proteins, especially regarding cellular localization, mobility, metabolism and susceptibility to enzymatically-induced release. It is likely that further exploration of the structure and function of the GPI anchor may reveal additional roles for this unusual mechanism of membrane-protein attachment.  相似文献   

10.
Gpi7 was isolated by screening for mutants defective in the surface expression of glycosylphosphatidylinositol (GPI) proteins. Gpi7 mutants are deficient in YJL062w, herein named GPI7. GPI7 is not essential, but its deletion renders cells hypersensitive to Calcofluor White, indicating cell wall fragility. Several aspects of GPI biosynthesis are disturbed in Deltagpi7. The extent of anchor remodeling, i.e. replacement of the primary lipid moiety of GPI anchors by ceramide, is significantly reduced, and the transport of GPI proteins to the Golgi is delayed. Gpi7p is a highly glycosylated integral membrane protein with 9-11 predicted transmembrane domains in the C-terminal part and a large, hydrophilic N-terminal ectodomain. The bulk of Gpi7p is located at the plasma membrane, but a small amount is found in the endoplasmic reticulum. GPI7 has homologues in Saccharomyces cerevisiae, Caenorhabditis elegans, and man, but the precise biochemical function of this protein family is unknown. Based on the analysis of M4, an abnormal GPI lipid accumulating in gpi7, we propose that Gpi7p adds a side chain onto the GPI core structure. Indeed, when compared with complete GPI lipids, M4 lacks a previously unrecognized phosphodiester-linked side chain, possibly an ethanolamine phosphate. Gpi7p contains significant homology with phosphodiesterases suggesting that Gpi7p itself is the transferase adding a side chain to the alpha1,6-linked mannose of the GPI core structure.  相似文献   

11.
Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins   总被引:32,自引:0,他引:32  
M G Low 《FASEB journal》1989,3(5):1600-1608
  相似文献   

12.
The anchors of mature glycosylphosphatidylinositol (GPI)-anchored proteins of Saccharomyces cerevisiae contain either ceramide or diacylglycerol with a C26:0 fatty acid in the sn2 position. The primary GPI lipid added to newly synthesized proteins in the ER consists of diacylglycerol with conventional C16 and C18 fatty acids. Here we show that GUP1 is essential for the synthesis of the C26:0-containing diacylglycerol anchors. Gup1p is an ER membrane protein with multiple membrane-spanning domains harboring a motif that is characteristic of membrane-bound O-acyl-transferases (MBOAT). Gup1Delta cells make normal amounts of GPI proteins but most mature GPI anchors contain lyso-phosphatidylinositol, and others possess phosphatidylinositol with conventional C16 and C18 fatty acids. The incorporation of the normal ceramides into the anchors is also disturbed. As a consequence, the ER-to-Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. Gup1Delta cells have fragile cell walls and a defect in bipolar bud site selection. GUP1 function depends on the active site histidine of the MBOAT motif. GUP1 is highly conserved among fungi and protozoa and the gup1Delta phenotype is partially corrected by GUP1 homologues of Aspergillus fumigatus and Trypanosoma cruzi.  相似文献   

13.
Glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins is the most complex and metabolically expensive of the lipid posttranslational modifications described to date. The GPI anchor is synthesized via a membrane-bound multistep pathway in the endoplasmic reticulum (ER) requiring >20 gene products. The pathway is initiated on the cytoplasmic side of the ER and completed in the ER lumen, necessitating flipping of a glycolipid intermediate across the membrane. The completed GPI anchor is attached to proteins that have been translocated across the ER membrane and that display a GPI signal anchor sequence at the C terminus. GPI proteins transit the secretory pathway to the cell surface; in yeast, many become covalently attached to the cell wall. Genes encoding proteins involved in all but one of the predicted steps in the assembly of the GPI precursor glycolipid and its transfer to protein in mammals and yeast have now been identified. Most of these genes encode polytopic membrane proteins, some of which are organized in complexes. The steps in GPI assembly, and the enzymes that carry them out, are highly conserved. GPI biosynthesis is essential for viability in yeast and for embryonic development in mammals. In this review, we describe the biosynthesis of mammalian and yeast GPIs, their transfer to protein, and their subsequent processing.  相似文献   

14.
The mature sphingolipids of yeast consist of IPCs (inositolphosphorylceramides) and glycosylated derivatives thereof. Beyond being an abundant membrane constituent in the organelles of the secretory pathway, IPCs are also used to constitute the lipid moiety of the majority of GPI (glycosylphosphatidylinositol) proteins, while a minority of GPI proteins contain PI (phosphatidylinositol). Thus all GPI anchor lipids (as well as free IPCs) typically contain C26 fatty acids. However, the primary GPI lipid that isadded to newly synthesized proteins in the endoplasmic reticulum consists of a PI with conventional C16 and C18 fatty acids. A new class of enzymes is required to replace the fatty acid in sn-2 by a C26 fatty acid. Cells lacking this activity make normal amounts of GPI proteins but accumulate GPI anchors containing lyso-PI. As a consequence, the endoplasmic reticulum to Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. The GPI anchor containing C26 in sn-2 can further be remodelled by the exchange of diacylglycerol for ceramide. This process is also dependent on the presence of specific phosphorylethanolamine side-chains on the GPI anchor.  相似文献   

15.
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.  相似文献   

16.
[目的]在酵母细胞中蛋白质的糖基磷酸肌醇化(GPI)修饰是将GPI定位于细胞膜或细胞壁的信号.目前已对酵母GPI蛋白的细胞定位信号有一定了解,但对丝状真菌GPI蛋白的定位则了解甚少.AfPhoA是丝状真菌烟曲霉(Aspergillus fumigatus)的酸性磷酸酯酶,是GPI修饰的蛋白.该蛋白首先分离自细胞膜,随后又发现该蛋白与细胞壁结合.分析其C-端序列也未发现已知的定位信号,因此目前还不能确定其细胞定位.[方法]我们以绿色荧光蛋白(GFP)作为报告分子,将AfPhoA的C-端序列与GFP的C-端融合后检测融合GFP的细胞定位.[结果]我们用烟曲霉几丁质酶AfChiB1的启动子和N-端信号肽构建了可在烟曲霉中分泌表达GFP的表达载体pchiGFP.在此基础上将AfPhoA的C-端与GFP融合,融合质粒与pCDA14共转化烟曲霉后筛选到一株转化子.该转化子可表达融合GFP,在诱导和非诱导条件下,融合GFP均主要分布在细胞膜上,随培养时间的延长,融合GFP在细胞壁上也有少量分布;在培养上清液中只能检出约30KD的GFP融合蛋白,而没有完整的GFP融合蛋白,推测为从GPI锚上水解释放的.[结论]我们的研究结果表明,AfPhoA蛋白GPI修饰的作用是使该蛋白定位于细胞膜.本研究不仅初步确定了AfPhoA蛋白GPI修饰的细胞膜定位功能,而且为烟曲霉基因与蛋白质功能的研究建立了一个有效表达系统.  相似文献   

17.
In the plasma membrane of animal cells, many membrane-spanning proteins exhibit lower lateral mobilities than glycosylphosphatidylinositol (GPI)-linked proteins. To determine if the GPI linkage was a major determinant of the high lateral mobility of these proteins, we measured the lateral diffusion of chimeric membrane proteins composed of normally transmembrane proteins that were converted to GPI-linked proteins, or GPI-linked proteins that were converted to membrane-spanning proteins. These studies indicate that GPI linkage contributes only marginally (approximately twofold) to the higher mobility of several GPI-linked proteins. The major determinant of the high mobility of these proteins resides instead in the extracellular domain. We propose that lack of interaction of the extracellular domain of this protein class with other cell surface components allows diffusion that is constrained only by the diffusion of the membrane anchor. In contrast, cell surface interactions of the ectodomain of membrane-spanning proteins exemplified by the vesicular stomatitis virus G glycoprotein reduces their lateral diffusion coefficients by nearly 10-fold with respect to many GPI-linked proteins.  相似文献   

18.
Glycosylinositol phospholipid (GPI) membrane anchors are the sole means of membrane attachment of a large number of cell surface proteins, including the variant surface glycoproteins (VSGs) of the parasitic protozoan, Trypanosoma brucei. Biosynthetic data suggest that GPI-anchored proteins are synthesized with carboxy-terminal extensions that are immediately replaced by GPI, suggesting the existence of preformed GPI species available for transfer to the nascent protein in the ER. Candidate precursor glycolipids having a linear sequence indistinguishable from the conserved core structure found on all GPI anchors, have been characterized in T. brucei. In this paper we describe the transfer of three GPI variants to endogenous VSG in vitro. GPI addition is not reduced by inhibitors of protein synthesis and does not require ATP or GTP, consistent with a transpeptidation mechanism.  相似文献   

19.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been regarded as typical cell surface proteins found in most eukaryotic cells from yeast to man. They are embedded in the outer plasma membrane leaflet via a carboxy-terminally linked complex glycolipid GPI structure. The amphiphilic nature of the GPI anchor, its compatibility with the function of the attached protein moiety and the capability of GPI-anchored proteins for spontaneous insertion into and transfer between artificial and cellular membranes initially suggested their potential for biotechnological applications. However, these expectations have been hardly fulfilled so far. Recent developments fuel novel hopes with regard to: (i) Automated online expression, extraction and purification of therapeutic proteins as GPI-anchored proteins based on their preferred accumulation in plasma membrane lipid rafts, (ii) multiplex custom-made protein chips based on GPI-anchored cell wall proteins in yeast, (iii) biomaterials and biosensors with films consisting of sets of distinct GPI-anchored binding-proteins or enzymes for sequential or combinatorial catalysis, and (iv) transport of therapeutic proteins across or into relevant tissue cells, e.g., enterocytes or adipocytes. Latter expectations are based on the demonstrated translocation of GPI-anchored proteins from plasma membrane lipid rafts to cytoplasmic lipid droplets and eventually further into microvesicles which upon release from donor cells transfer their GPI-anchored proteins to acceptor cells. The value of these technologies, which are all based on the interaction of GPI-anchored proteins with membranes and surfaces, for the engineering, production and targeted delivery of biomolecules for a huge variety of therapeutic and biotechnological purposes should become apparent in the near future.  相似文献   

20.
Even though glycosylphosphatidylinositol (GPI)-anchored proteins lack direct structural contact with the intracellular space, these ubiquitously expressed surface receptors activate signaling cascades and endocytosis when crosslinked by extracellular ligands. Such properties may be due to their association with membrane microdomains composed of glycosphingolipids, cholesterol and some signaling proteins. In this study, we hypothesize that GPI proteins may be required for crosslinking-mediated endocytosis of extracellular bioconjugates. To test this hypothesis, we first biotinylated the surface membranes of native K562 erythroleukemia cells versus K562 cells incapable of surface GPI protein expression. We then compared the entry of fluorescently labeled avidin or DNA condensed on polyethylenimine-avidin bioconjugates into the two biotinylated cell populations. Using fluorescence microscopy, nearly 100% efficiency of fluorescent avidin endocytosis was demonstrated in both cell types over a 24 h period. Surprisingly, plasmid DNA transfer was slightly more efficient among the biotinylated GPI-negative cells as measured by the expression of green fluorescence protein. Our findings that GPI proteins are not required for the endocytosis of avidin bioconjugates into biotinylated cells suggest that endocytosis associated with general membrane crosslinking may be due to overall reorganization of the membrane domains rather than GPI protein-specific interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号