首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   

2.
3.
Conway ME  Coles SJ  Islam MM  Hutson SM 《Biochemistry》2008,47(19):5465-5479
Redox regulation of proteins through oxidation and S-thiolation are important regulatory processes, acting in both a protective and adaptive role in the cell. In the current study, we investigated the sensitivity of the neuronal human cytosolic branched-chain aminotransferase (hBCATc) protein to oxidation and S-thiolation, with particular attention focused on functionality and modulation of its CXXC motif. Thiol specific reagents showed significant redox cycling between the reactive thiols and the TNB anion, and using NEM, four of the six reactive thiols are critical to the functionality of hBCATc. Site-directed mutagenesis studies supported these findings where a reduced kcat (ranging from 50-70% of hBCATc) for C335S, C338S, C335/8S, and C221S, respectively, followed by a modest effect on C242S was observed. However, only the thiols of the CXXC motif (C335 and C338) were directly involved in the reversible redox regulation of hBCATc through oxidation (with a loss of 40-45% BCAT activity on air oxidation alone). Concurrent with these findings, under air oxidation, the X-ray crystallography structure of hBCATc showed a disulphide bond between C335 and C338. Further oxidation of the other four thiols was not evident until levels of hydrogen peroxide were elevated. S-thiolation experiments of hBCATc exposed to GSH provided evidence for significant recycling between GSH and the thiols of hBCATc, which implied that under reducing conditions GSH was operating as a thiol donor with minimal S-glutathionylation. Western blot analysis of WT hBCATc and mutant proteins showed that as the ratio of GSH:GSSG decreased significant S-glutathionylation occurred (with a further loss of 20% BCAT activity), preferentially at the thiols of the CXXC motif, suggesting a shift in function toward a more protective role for GSH. Furthermore, the extent of S-glutathionylation increased in response to oxidative stress induced by hydrogen peroxide potentially through a C335 sulfenic acid intermediate. Deglutathionylation of hBCATc-SSG using the GSH/glutaredoxin system provides evidence that this protein may play an important role in cellular redox regulation. Moreover, redox associations between hBCATc and several neuronal proteins were identified using targeted proteomics. Thus, our data provides strong evidence that the reactive thiol groups, in particular the thiols of the CXXC motif, play an integral role in redox regulation and that hBCATc has redox mediated associations with several neuronal proteins involved in G-protein cell signaling, indicating a novel role for hBCATc in cellular redox control.  相似文献   

4.

Background

There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols.

Methodology/Principal Findings

To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C5 maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFκB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFκB and cell death through its direct inhibition of parthenolide''s modulation of exofacial thiols.

Conclusions/Significance

Based on these data, we postulate that one component of parthenolide''s anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy.  相似文献   

5.

Background

Thiol-mediated redox regulation of proteins plays a key role in many cellular processes.

Methods

To understand the redox status of cysteinyl thiol groups of the desired proteins, we developed a new maleimide reagent: a maleimide-conjugated single strand DNA, DNA-maleimide (DNA-Mal).

Results

DNA-Mal labelled proteins run as a distinct band on SDS-PAGE, with a discrete 9.32 kDa mobility shift per label regardless of the protein species or electrophoretic conditions.

Conclusions

DNA-Mal labels free thiols like standard maleimide reagents, but possesses practical advantages in titration of the number and relative content of free thiols in a protein.

General significance

The versatility of DNA molecule enhances the application of DNA-Mal in a broader range of cysteine containing proteins.  相似文献   

6.
Glutathione, the most abundant low-molecular weight thiol in the skin, has been shown to protect the skin from both photobiological and chemical injury. The thiols, glutathione in particular, have also been shown to be crucially involved in defence against contact allergens. Since the levels of extracellular thiol concentrations are important determinants of intracellular thiol status, we have compared the normal concentrations and the redox status of the main low-molecular weight thiol components in the extracellular fluid at the dermo-epidermal junction with the corresponding plasma levels. In their sulfhydryl form, all three thiols, i.e. glutathione, cysteine and homocysteine, were more abundant in experimental skin blister fluid than in plasma, as were the free disulfides of glutathione and homocysteine, whereas the free disulfides of cysteine were about the same in blister fluid and in plasma. Protein mixed disulfide levels were higher in plasma than in blister fluid. The present results provide information concerning the extracellular defence in the skin.  相似文献   

7.
Glutathione, the most abundant low-molecular weight thiol in the skin, has been shown to protect the skin from both photobiological and chemical injury. The thiols, glutathione in particular, have also been shown to be crucially involved in defence against contact allergens. Since the levels of extracellular thiol concentrations are important determinants of intracellular thiol status, we have compared the normal concentrations and the redox status of the main low-molecular weight thiol components in the extracellular fluid at the dermo-epidermal junction with the corresponding plasma levels. In their sulfhydryl form, all three thiols, i.e. glutathione, cysteine and homocysteine, were more abundant in experimental skin blister fluid than in plasma, as were the free disulfides of glutathione and homocysteine, whereas the free disulfides of cysteine were about the same in blister fluid and in plasma. Protein mixed disulfide levels were higher in plasma than in blister fluid. The present results provide information concerning the extracellular defence in the skin.  相似文献   

8.
Acute treatment of mice with Na-o-phenylphenol or phenylbenzoquinone, an electrophilic metabolite of o-phenylphenol, resulted in differential depletion of contents of protein and nonprotein thiols in bladder, kidney and liver. Maximum decrease in the levels of protein and nonprotein reduced thiols was observed in bladder (by both agents) and was followed by kidney (by both agents) and liver (phenylbenzoquinone only). The reason for this differential changes in reduced thiol contents remains to be understood. The content of protein and nonprotein disulfides was higher in bladder of mice treated with Na-o-phenylphenol compared to that observed in untreated mice bladder. Phenyl 2,5'-p-benzoquinone mediated in vivo depletion of nonprotein and protein thiols suggests that Na-o-phenylphenol treatment may decrease in vivo thiols via the formation of phenylbenzoquinone. Increased disulfide formation is considered to represent an index of oxidative stress produced by chemical. Increases in the level of protein and nonprotein disulfides in bladder suggest as observed in this study that administration of Na-o-phenylphenol to mice produced oxidative stress in bladder. Products of redox cycling of xenobiotics are known to cause cellular toxicity via altering the homeostasis of thiol status. Therefore, it is concluded that decreases in protein thiol contents either via alkylation and/or oxidation of sulfhydryl groups of proteins and increases in disulfide contents presumably by products of redox cycling of Na-o-phenylphenol may play a role in Na-o-phenylphenol-induced cellular toxicity.  相似文献   

9.
10.
Fluorometric quantitation of cellular and nonprotein thiols   总被引:1,自引:0,他引:1  
A microfluorometric assay for thiols has been developed using the thiol-specific fluorochrome N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM). The technique may be used to quantitate either cellular or plasma thiols over a range of 0.01 to 3.0 nmol and may be used with as few as 1-3 X 10(5) cells giving highly proportional and reproducible results. Values for nonprotein thiols obtained with this assay agree well with previous reports on glutathione (GSH) levels for both lymphocytes and plasma. Readings are determined with the aid of an automated fluorescence microplate reader which allows up to 96 samples, including standards, to be read at the same time. Cellular thiols accessible after lysis were also quantitated before and after treatment of intact cells with various thiol-reactive chemicals. Interestingly, HgCl2, bromoethanesulfonic acid, and N-ethylmaleimide differentially modified protein and nonprotein thiol levels.  相似文献   

11.
The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.  相似文献   

12.
Piperine (1-Piperoyl piperidine) is the major alkaloid of black and long peppers used widely in various systems of traditional medicine. The present study investigates the toxicity of piperine via free-radical generation by determining the degree of lipid peroxidation and cellular thiol status in the rat intestine. Lipid peroxidation content, measured as thiobarbituric reactive substances (TBARS), was increased with piperine treatment although conjugate diene levels were not altered. A significant increase in glutathione levels was observed, whereas protein thiols and glutathione reductase activity were not altered. The study suggests that increased TBARS levels may not be a relevant index of cytotoxicity, since thiol redox was not altered, but increased synthesis transport of intracellular GSH pool may play an important role in cell hemostasis and requires further study.  相似文献   

13.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

14.
Gough JD  Gargano JM  Donofrio AE  Lees WJ 《Biochemistry》2003,42(40):11787-11797
The production of proteins via recombinant DNA technology often requires the in vitro folding of inclusion bodies, which are protein aggregates. To create a more efficient redox buffer for the in vitro folding of disulfide containing proteins, aromatic thiols were investigated for their ability to increase the folding rate of scrambled RNase A. Scrambled RNase A is fully oxidized RNase A with a relatively random distribution of disulfide bonds. The importance of the thiol pK(a) value was investigated by the analysis of five para-substituted aromatic thiols with pK(a) values ranging from 5.2 to 6.6. Folding was measured at pH 6.0 where the pK(a) value of the thiols would be higher, lower, or equal to the solution pH. Thus, relative concentrations of thiol and thiolate would vary across the series. At pH 6.0, the aromatic thiols increased the folding rate of RNase A by a factor of 10-23 over that observed for glutathione, the standard additive. Under optimal conditions, the apparent rate constant increased as the thiol pK(a) value decreased. Optimal conditions occurred when the concentration of protonated thiol in solution was approximately 2 mM, although the total thiol concentration varied considerably. The importance of the concentration of protonated thiol in solution can be understood based on equilibrium effects. Kinetic studies suggest that the redox buffer participates as the nucleophile and/or the center thiol in the key rate determining thiol disulfide interchange reactions that occur during protein folding. Aromatic thiols proved to be kinetically faster and more versatile than classical aliphatic thiol redox buffers.  相似文献   

15.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

16.
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol–disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol–disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.  相似文献   

17.
Increases in plasma concentrations of total homocysteine (tHcy) have recently been reported in multiple sclerosis (MS) as the alteration of the methionine cycle for the onset of autoimmune diseases. Homocysteine (Hcy) and cysteine (Cys) are generated by the methionine cycle and transsulfuration reactions. Their plasma levels are subjected to complex redox changes by oxidation and thiol/disulfide (SH/SS) exchange reactions regulated by albumin. The methionine loading test (MLT) is a useful in vivo test to assay the functionality of the methionine cycle and transsulfuration reactions. Time courses of redox species of Cys, cysteinylglycine (CGly), Hcy, and glutathione have been investigated in plasma of MS patients versus healthy subjects after an overnight fasting, and 2, 4, and 6 h after an oral MLT (100 mg/kg body weight), to detect possible dysfunctions of the methionine cycle, transsulfuration reactions and alterations in plasma distribution of redox species. After fasting, the MS group showed a significant increase in cysteine-protein mixed disulfides (bCys) and total Cys (tCys). While plasma bCys and tCys in MS group remained elevated after methionine administration when compared to control, cystine (oxCys) increased significantly with respect to control. Although increased plasma concentrations of bCys and tCys at fasting might reflect an enhance of transsulfuration reactions in MS patients, this was not confirmed by the analysis of redox changes of thiols and total thiols after MLT. This study has also demonstrated that albumin-dependent SH/SS exchange reactions are a potent regulation system of thiol redox species in plasma.  相似文献   

18.
Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease.  相似文献   

19.
There is an overwhelming interest in the study of the redox status of the cell surface affecting redox signaling in the cells and also predicting the total redox status of the cells. Measuring the total surface thiols (cell surface molecule thiols, csm-SH) we have shown that the overall level of surface thiols is tightly controlled. In vitro, the total concentration of intracellular glutathione (iGSH) seems to play a regulatory role in determination of the amounts of reduced proteins on cells. In addition, short term exposure of the cell surface to glutathione disulfide (GSSG, oxidized GSH) seems to reduce the overall levels of csm-SH suggesting that the function of some cysteine containing proteins on the cell surface may be regulated by the amount of GSSG secreted from the cells or the GSSG available in the extracellular environment. Examination of peripheral blood mononuclear cells (PBMCs) from healthy or HIV-infected subjects failed to reveal a similar correlation between the intra- and extracellular thiol status of cells. Although there is a relatively wide variation between individuals in both csm-SH and iGSH there is no correlation between the iGSH and csm-SH levels measured for healthy and HIV-infected individuals. There are many reports suggesting different redox active proteins on the cell surface to be the key players in the total cell surface redox regulation. However, we suggest that the redox status of the cells is regulated through a complex and tightly regulated mechanism that needs further investigation. In the mean time, overall surface thiol measurements together with case specific protein determinations may offer the most informative approach. In this review, we discuss our own results as well as results from other laboratories to argue that the overall levels of surface thiols on the exofacial membrane are regulated primarily by redox status of the cell surface microenvironment.  相似文献   

20.
Reversible oxidation on proteins of vicinal thiols to form intraprotein disulfides is believed to be an important means by which redox sensitivity is conferred on cellular signaling and metabolism. Affinity chromatography using immobilized phenylarsine oxide (PAO), which binds preferentially to vicinal thiols over monothiols, has been used in very limited studies to isolate the fraction of cellular proteins that exhibit reversible oxidation of vicinal thiols to presumed disulfide bonds. A challenge to the use of PAO-affinity chromatography for isolation of readily oxidizable vicinal thiol proteins (VTPs) has been the lack of a disulfide reducing agent that reverses oxidation of the PAO-binding protein thiols and maintains these in the reduced state necessary to bind PAO but does not also compete with the VTPs for binding to the immobilized PAO. The present study demonstrates that the capture from a detergent-soluble rat brain extract of VTPs by PAO-affinity chromatography was improved greatly by use of the reducing agent tris(2-carboxyethyl)-phosphine which, unlike more traditional disulfide-reducing agents, does not contain a thiol group. Moreover, we show that, while a substantial fraction of total brain proteins contain PAO-binding thiols, only a fraction of these were readily and reversibly oxidized. The two most abundant of these redox-active proteins were identified as albumin and triose phosphate isomerase (TPI). We propose that TPI is a candidate intracellular redox receptor protein. The improved PAO-affinity method detailed here should enable the discovery of lower abundance novel redox-active regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号