首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of hyperlipidemic patients with the thiol compound N-acetylcysteine (NAC) was previously shown to cause a significant dose-related increase in the high-density lipoprotein (HDL)-cholesterol serum level, suggesting the possibility that its disease-related decrease may result from a diminished thiol concentration and/or thiol/disulfide redox status (REDST) in the plasma. We therefore investigated plasma thiol levels and REDST in normo-/hyperlipidemic subjects with and without coronary heart disease (CHD). The thiol level, REDST, and amino acid concentrations in the plasma and intracellular REDST of peripheral blood mononuclear cells (PBMC) have been determined in 62 normo- and hyperlipidemic subjects. Thirty-three of these subjects underwent coronary angiography, because of clinical symptoms of CHD. All groups of hyperlipidemic patients under test and those normolipidemic individuals with documented coronary stenoses showed a marked decrease in plasma thiol concentrations, plasma and intracellular REDST of PBMCs, and a marked increase in plasma taurine levels. Individual plasma thiol concentrations and plasma REDST were strongly negatively correlated with the serum LDL-cholesterol and positively correlated with the serum HDL-cholesterol level. Together with the earlier report about the effect of NAC on the HDL-cholesterol serum level, our findings suggest strongly that lower HDL-cholesterol serum levels may result from a decrease in plasma thiol level and/or REDST possibly through an excessive cysteine catabolism into taurine.  相似文献   

2.
3.
Thiol redox state (TRS) evaluation is mostly restricted to the estimation of GSH and GSSG. However, these TRS parameters can estimate the GSSG/GSH potential, which might be useful for indicating abnormalities in redox metabolism. Nonetheless, evaluation of the multiparameric nature of TRS is required for a more accurate assessment of its physiological role. The present protocol extends the partial assessment of TRS by current methodologies. It measures 15 key parameters of TRS by two modular subprotocols: one for the glutathione (GSH)- and cysteine (CSH)-based nonprotein (NP) thiols/mixed disulfides (i.e., GSH, GSSG, GSSNP, CSH, CSSNP, NPSH, NPSSNP, NPxSHNPSSNP, NPxSHNPSH), and the other for their protein (P) thiols/mixed disulfides (i.e., PSH, PSSG, PSSC, PSSNP, PSSP, NPxSHPSSNP). The protocol eliminates autoxidation of GSH and CSH (and thus overestimation of GSSG and CSSNP). Its modularity allows the determination GSH and GSSG also by other published specific assays. The protocol uses three assays; two are based on the photometric reagents 4,4′-dithiopyridine (DTP) and ninhydrin (NHD), and the third on the fluorometric reagent o-phthaldialdehyde (OPT). The initial assays employing these reagents have been extensively modified and redesigned for increased specificity, sensitivity, and simplicity. TRS parameter values and their standard errors are estimated automatically by sets of Excel-adapted algebraic equations. Protocol sensitivity for NPSH, PSH, NPSSNP, PSSP, PSSNP, CSH, CSSNP, PSSC, NPxSHNPSSNP, and NPxSHNPSH is 1 nmol –SH/CSH, for GSSNP 0.2 nmol, for GSH and GSSG 0.4 nmol, and for PSSG 0.6 nmol. The protocol was applied on human plasma, a sample of high clinical value, and can be also applied in any organism.  相似文献   

4.
The functional group of cysteine is a thiol group (SH) that, due to its chemical reactivity, is able to undergo a wide array of modifications each with the potential to confer a different property or function to the molecule harboring this residue. Most of these modifications involve the reversible oxidation of the thiol to sulfenic acid (SOH), and disulfide, including intra- and intermolecular disulfides between polypeptides and glutathione (glutathionylation). The reversibility of these oxidations allows thiol groups to serve as versatile chemical and structural transducing elements in several low molecular mass metabolites and proteins. A plethora of cellular functions such as DNA and protein synthesis, protein secretion, cytoskeleton architecture, differentiation, apoptosis, and anti-oxidant defense, are recognized to be modulated, at certain stage, by thiol–disulfide exchange mechanisms of redox active thiol groups. All organisms are equipped with enzymatic systems composed by NADPH-dependent reductases, redoxins, and peroxidases that provide kinetic control of global thiol-redox homeostasis as well as target selectivity. These redox systems are distributed in different subcellular compartments and are not in equilibrium with each other. In consequence, measuring cellular thiol–disulfide status represents a challenge for studies aimed to obtain dynamic and spatio-temporal resolution. This review provides a summary of the methods and tools available to quantify the thiol redox status of cells.  相似文献   

5.
We present here a novel probe, VitaBright-48, for the evaluation of the cellular level of reduced thiols. Using different cell lines and apoptogenic agents we show that a decrease in the level of reduced thiols correlates with well-known apoptotic markers such as phosphatidylserine translocation and caspase activity. The cell population to be investigated is added to the nonfluorescent stain VitaBright-48, which immediately permeates the cell membrane and reacts with intracellular thiols, forming a fluorescent compound. Quantification of the cell fluorescence directly after staining (without washing) can then be used to determine the population's cellular thiol level at the single cell level. Based on the results presented here, we suggest that measurement of changes in the level of free thiols should be added to the list of phenotypes which may be investigated in order to detect apoptosis.  相似文献   

6.
Data obtained over the last two years pertinent to the thiol redox model for the modulation of hexose transport activity by insulin is summarized. The model proposes that activation of hexose transport in fat cells involves sulfhydryl oxidation to the disulfide form in a key protein component of the fat cell surface membrane. Theoretically, the rapid activation of transport by insulin may involve either the conversion of inactive membrane carriers to the active form as originally proposed, or the conversion of a low Vmax transport system to a high Vmax form. The present experiments showed that the percent inhibition of insulin-activated transport rates by submaximal levels of cytochalasin B was decreased compared to its effects on basal transport. Treatment of fat cells with N-ethylmaleimide inhibited cytochalasin B action but not transport activity. When insulin or the oxidant vitamin K5 was added to cells 5 minutes before the N-ethylmaleimide, the elevated transport activity was also resistant to the sulfhydryl reagent, but cytochalasin B retained its potent inhibitory effect on transport. The data demonstrate that unique properties characterize basal versus insulin-activated transport activity with respect to the sensitivity of cytochalasin B action to sulfhydryl blockade in isolated fat cells. The data are consistent with the concept that activation of transport activity reflects the conversion of a reduced (sulfhydryl) system characterized by a low Vmax to an oxidized (disulfide), high Vmax transport system.  相似文献   

7.

Introduction

Human plasma metabolomics offer powerful tools for understanding disease mechanisms and identifying clinical biomarkers for diagnosis, efficacy prediction and patient stratification. Although storage conditions can affect the reliability of data from metabolites, strict control of these conditions remains challenging, particularly when clinical samples are included from multiple centers. Therefore, it is necessary to consider stability profiles of each analyte.

Objectives

The purpose of this study was to extract unstable metabolites from vast metabolome data and identify factors that cause instability.

Method

Plasma samples were obtained from five healthy volunteers, were stored under ten different conditions of time and temperature and were quantified using leading-edge metabolomics. Instability was evaluated by comparing quantitation values under each storage condition with those obtained after ?80 °C storage.

Result

Stability profiling of the 992 metabolites showed time- and temperature-dependent increases in numbers of significantly changed metabolites. This large volume of data enabled comparisons of unstable metabolites with their related molecules and allowed identification of causative factors, including compound-specific enzymatic activity in plasma and chemical reactivity. Furthermore, these analyses indicated extreme instability of 1-docosahexaenoylglycerol, 1-arachidonoylglycerophosphate, cystine, cysteine and N6-methyladenosine.

Conclusion

A large volume of data regarding storage stability was obtained. These data are a contribution to the discovery of biomarker candidates without misselection based on unreliable values and to the establishment of suitable handling procedures for targeted biomarker quantification.
  相似文献   

8.
Two new iodoacetamide‐substituted cyanines, C3NIASO3 and C5NIASO3, were synthesized starting from hemicyanine and were utilized for labeling plasma proteins. Specificity, sensitivity and feasibility for SH residues was tested utilizing an equimolar mixture of standard proteins and with normal plasma. Oxidized plasma proteins following H2O2 exposure and plasma from patients with focal glomerulosclerosis were analyzed as models of altered protein oxido‐redox status. Following optimization of the assay (dye/protein ratio, pH), C3NIASO3 and C5NIASO3 gave a sensitivity slightly better than N‐hydroxysuccinimidyl dyes for plasma proteins and were successfully employed for differential display electrophoresis (DIGE). Twenty‐nine proteins were detected in normal plasma after 2‐DE while less proteins were detected in plasma of patients with glomerulosclerosis. Following massive ‘in vitro' oxidation with H2O2, C3NIASO3 and C5NIASO3 failed to detect any residual SH, implicating massive oxidation. In conclusion, this study describes the synthesis of two new iodoacetamide cyanines that can be utilized for the analysis of plasma proteins with 2‐DE and DIGE. They are also indicated for the definition of the oxido‐redox status of proteins and were successfully utilized to extend the analysis of oxidation damage in patients with glomerulosclerosis.  相似文献   

9.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

10.
Garant MJ  Kole S  Maksimova EM  Bernier M 《Biochemistry》1999,38(18):5896-5904
In this study, we used maleimidobutyrylbiocytin to examine possible alteration that may occur in the redox state of the insulin receptor (IR) sulfhydryl groups in response to reduced glutathione (GSH) or N-acetyl-L-cysteine (NAC). Short-term treatment of intact cells expressing large numbers of IR with GSH or NAC led to a rapid and reversible reduction of IR alpha-subunit disulfides, without affecting the receptor beta-subunit thiol reactivity. The overall integrity of the oligomeric structure of IR was maintained, indicating that neither class I nor class II disulfides were targeted by these agents. Similar findings were obtained in cells transfected with IR mutants lacking cysteine524, one of the class I disulfides that link the two IR alpha-subunits. Membrane-associated thiols did not participate in GSH- or NAC-mediated reduction of IR alpha-subunit disulfides. No difference in insulin binding was observed in GSH-treated cells; however, ligand-mediated increases in IR autophosphorylation, tyrosine phosphorylation of cellular substrates, and dual phosphorylation of the downstream target mitogen-activated protein kinase were inhibited at concentrations of GSH (10 mM or greater) that yielded a significant increase in IR alpha-subunit thiol reactivity. GSH did not affect IR signaling in the absence of insulin. Our results provide the first evidence that the IR alpha-subunit contains a select group of disulfides whose redox status can be rapidly altered by the reducing agents GSH and NAC.  相似文献   

11.
Mitochondrial membrane potential (DeltaPsi(m)) depolarization contributes to cell death and electrical and contractile dysfunction in the post-ischemic heart. An imbalance between mitochondrial reactive oxygen species production and scavenging was previously implicated in the activation of an inner membrane anion channel (IMAC), distinct from the permeability transition pore (PTP), as the first response to metabolic stress in cardiomyocytes. The glutathione redox couple, GSH/GSSG, oscillated in parallel with DeltaPsi(m) and the NADH/NAD(+) redox state. Here we show that depletion of reduced glutathione is an alternative trigger of synchronized mitochondrial oscillation in cardiomyocytes and that intermediate GSH/GSSG ratios cause reversible DeltaPsi(m) depolarization, although irreversible PTP activation is induced by extensive thiol oxidation. Mitochondrial dysfunction in response to diamide occurred in stages, progressing from oscillations in DeltaPsi(m) to sustained depolarization, in association with depletion of GSH. Mitochondrial oscillations were abrogated by 4'-chlorodiazepam, an IMAC inhibitor, whereas cyclosporin A was ineffective. In saponin-permeabilized cardiomyocytes, the thiol redox status was systematically clamped at GSH/GSSG ratios ranging from 300:1 to 20:1. At ratios of 150:1-100:1, DeltaPsi(m) depolarized reversibly, and a matrix-localized fluorescent marker was retained; however, decreasing the GSH/GSSG to 50:1 irreversibly depolarized DeltaPsi(m) and induced maximal rates of reactive oxygen species production, NAD(P)H oxidation, and loss of matrix constituents. Mitochondrial GSH sensitivity was altered by inhibiting either GSH uptake, the NADPH-dependent glutathione reductase, or the NADH/NADPH transhydrogenase, indicating that matrix GSH regeneration or replenishment was crucial. The results indicate that GSH/GSSG redox status governs the sequential opening of mitochondrial ion channels (IMAC before PTP) triggered by thiol oxidation in cardiomyocytes.  相似文献   

12.
α-Lipoic acid (αLA), as an inductor of hydrogen peroxide (H2O2) and nitrogen oxide (NO) generation and modulator of thiol redox status, plays an important role in cell signalling pathways. The study was designed to observe the effect of αLA on inflammatory response through changes in H2O2 and NO levels as well as thiol redox status. Sixteen physically active males were randomly assigned to one of two groups: placebo or αLA (1,200 mg?d?1 for 10 days prior to exercise). The exercise trial involved a 90-min run at 65 % VO2max (0 % gradient) followed by 15-min eccentric phase at 65 % VO2max (?10 % gradient). Blood samples were collected before the exercise trial and then again 20 min, 24, and 48 h after. αLA significantly elevated H2O2 but reduced NO generation before or after exercise. Thiol redox status (GSHtotal-2GSSG/GSSG) increased by >50 % after αLA and exercise (ANOVA, P?<?0.05) and correlated with changes in cytokines interleukin-6 (IL-6) (r?=??0.478, P?<?0.05) and IL-10 (r?=??0.455, P?<?0.05). This was caused by strong effect of αLA on GSSG concentration. αLA elevated IL-6 and IL-10 levels at 20 min after exercise and decreased in interleukin-1β and tumor necrosis factor α before and after exercise. This enhanced the regeneration of injured muscles. Creatine kinase activity tended to lower values after αLA intake. The study suggests that the combination of intense exercise with α-lipoic acid intake might be useful to improve the skeletal muscle regeneration through changes in inflammatory response which are associated with H2O2 and NO generation as well as thiol redox status.  相似文献   

13.
Gene expression and the thiol redox state   总被引:13,自引:0,他引:13  
  相似文献   

14.
The plasma compartment has particular features regarding the nature and concentration of low and high molecular weight thiols and oxidized derivatives. Plasma is relatively poor in thiol-based antioxidants; thiols are in lower concentrations than in cells and mostly oxidized. The different thiol-disulfide pairs are not in equilibrium and the steady-state concentrations of total thiols as well as reduced versus oxidized ratios are maintained by kinetic barriers, including the rates of reactions and transport processes. The single thiol of human serum albumin (HSA-SH) is the most abundant plasma thiol. It is an important target for oxidants and electrophiles due to its reactivity with a wide variety of species and its relatively high concentration. A relatively stable sulfenic (HSA-SO3H) acid can be formed in albumin exposed to oxidants. Plasma increases in mixed disulfides (HSA-SSR) or in sulfinic (HSA-SO2H) and sulfonic (HSA-SO3H) acids are associated with different pathologies and may constitute biomarkers of the antioxidant role of the albumin thiol. In this work we provide a critical review of the plasma thiol pool with a focus on human serum albumin.  相似文献   

15.
The biology of glutathione peroxidases and peroxiredoxins is reviewed with emphasis on their role in metabolic regulation. Apart from their obvious function in balancing oxidative challenge, these thiol peroxidases are not only implicated in orchestrating the adaptive response to oxidative stress, but also in regulating signaling triggered by hormones, growth factors and cytokines. The mechanisms presently discussed comprise dampening of redox-sensitive regulatory processes by elimination of hydroperoxides, suppression of lipoxygenase activity, committing suicide to save H2O2 for signaling, direct binding to receptors or regulatory proteins in a peroxidase activity-independent manner, or acting as sensors for hydroperoxides and as transducers of oxidant signals. The various mechanistic proposals are discussed in the light of kinetic data, which unfortunately are scarce. Taking into account pivotal criteria of a meaningful regulatory circuit, kinetic plausibility and specificity, the mechanistic concepts implying a direct sensor/transducer function of the thiol peroxidases appear most appealing. With rate constants for the reaction with hydroperoxide of 105–108 M? 1 s? 1, thiol peroxidases are qualified as kinetically preferred hydroperoxide sensors, and the ability of the oxidized enzymes to react with defined protein thiols lends specificity to the transduction process. The versatility of thiol peroxidases, however, allows multiple ways of interaction with regulatory pathways.  相似文献   

16.
Thylakoid protein phosphorylation and the thiol redox state   总被引:8,自引:0,他引:8  
Illumination of thylakoid membranes leads to the phosphorylation of a number of photosystem II-related proteins, including the reaction center proteins D1 and D2 as well as the light-harvesting complex (LHCII). Regulation of light-activated thylakoid protein phosphorylation has mainly been ascribed to the redox state of the electron carrier plastoquinone. In this work, we show that this phosphorylation in vitro is also strongly influenced by the thiol disulfide redox state. Phosphorylation of the light-harvesting complex of photosystem II was found to be favored by thiol-oxidizing conditions and strongly downregulated at moderately thiol-reducing conditions. In contrast, phosphorylation of the photosystem II reaction center proteins D1 and D2 as well as that of other photosystem II subunits was found to be stimulated up to 2-fold by moderately thiol-reducing conditions and kept at a high level also at highly reducing conditions. These responses of the level of thylakoid protein phosphorylation to changes in the thiol disulfide redox state are reminiscent of those observed in vivo in response to changes in the light intensity and point to the possibility of a second loop of redox regulation of thylakoid protein phosphorylation via the ferredoxin-thioredoxin system.  相似文献   

17.
18.
Human gingival fibroblast cultures were used to investigate the role of cellular thiol redox status in the mitogenic response. Increases in intracellular Ca2+ and cell cycle progression beyond G1 were followed as parameters of cellular mitogen-induced responses. Ethionine provided a G1 stage synchronization and altered the cellular redox poise as measured by the ratio NAD(P)H/NAD(P)+. Cultures harvested immediately after the 6 day ethionine low-serum synchronization showed a significant oxidation of their redox poise. Synchronized cultures, which were also glutathione (GSH) depleted, still showed an oxidized redox poise and significantly reduced GSH levels following a 24 hr incubation in drug-free, rich medium. Cellular reduced nicotinamide nucleotide levels correlated strongly (r = 0.995) with capacity to mobilize intracellular Ca2+ in response to basic fibroblast growth factor (bFGF). The sustained mitogenic response, as determined by cell cycle progression beyond G1, was also found to be interrelated with the cellular thiol redox status. Following a 24 hr recovery incubation in serum-rich medium, formerly synchronized cultures showed a rebound of their redox poise to a more reduced state and significant cell cycle progression beyond G1. In contrast, synchronized, GSH-depleted cultures did not progress and showed population distributions similar to those of cultures harvested immediately postsynchronization. Upon recovery of cellular GSH and reduced nicotinamide nucleotide levels, formerly GSH-depleted, growth-arrested cultures resumed cell cycle progression. The results suggest that the cellular response to specific mitogens is interrelated with the cellular thiol redox status. Cells that possess a thiol redox status below a threshold response point may have compromised Ca2+ sequestration and/or mobilization and therefore may be incapable of initiating the mitogen induced response cascade that culminates in cell cycle progression.  相似文献   

19.
Mycobacteria and other actinomycetes do not produce glutathione but make mycothiol (MSH; AcCys-GlcN-Ins) that has functions similar to those of glutathione and is essential for growth of Mycobacterium tuberculosis. Mycothiol synthase (MshD) catalyzes N acetylation of Cys-GlcN-Ins to produce MSH in Mycobacterium smegmatis mc2155, and Cys-GlcN-Ins is maintained at a low level. The mycothiol synthase mutant, the mshD::Tn5 mutant, produces high levels of Cys-GlcN-Ins along with two novel thiols, N-formyl-Cys-GlcN-Ins and N-succinyl-Cys-GlcN-Ins, and a small amount of MSH. The nonenzymatic reaction of acyl-coenzyme A (CoA) with Cys-GlcN-Ins to produce acyl-Cys-GlcN-Ins is a facile reaction under physiologic conditions, with succinyl-CoA being an order of magnitude more reactive than acetyl-CoA. The uncatalyzed reaction rates are adequate to account for the observed production of N-succinyl-Cys-GlcN-Ins and MSH under physiologic conditions. It was shown that the N-acyl-Cys-GlcN-Ins compounds are maintained in a substantially reduced state in the mutant but that Cys-GlcN-Ins exists in disulfide forms at 5 to 40% at different stages of growth. MSH was able to facilitate reduction of N-succinyl-Cys-GlcN-Ins disulfide through thiol-disulfide exchange, but N-formyl-Cys-GlcN-Ins was ineffective. The oxidized state of Cys-GlcN-Ins in cells appears to result from a high susceptibility to autoxidation and a low capacity of the cell to reduce its disulfide forms. The mutant exhibited no enhanced sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, or cumene hydroperoxide relative to the parent strain, suggesting that the most abundant thiol, N-formyl-Cys-GlcN-Ins, functions as a substitute for MSH.  相似文献   

20.
Plasma thiol concentration has long been recognised as a potential indicator for assessing the severity of oxidative stress processes within physiological systems. While such measurements are normally restricted to research studies, this communication has sought to develop and characterise a novel approach through which this parameter could be exploited within routine clinical settings. The protocol is based on the rapid derivatisation of reduced thiol functionalities (protein and monomolecular moieties) through the homogenous reaction of a naphthoquinone bromide derivative. Bromide released in the reaction can be easily quantified through ion chromatography (Isocractic Dionex DX-120 incorporating an IonPac AS14 anion exchange column and a 25 microL sample loop with conductivity detector. Mobile phase consisted sodium carbonate/bicarbonate (3.5 mM/1 mM) at a flow rate of 1.5 mL/min). Method selectivity and sensitivity has been critically evaluated. The technique covers the range 15 microM-3.5 mM PSH with a detection limit of 9 microM PSH and analysis time of 5 min. The efficacy of the approach for the analysis of human plasma from five volunteers was assessed (ranging from 49 to 72 microM with an intra assay variation of less than 5% in all cases). The responses were validated through comparison with the standard Ellman colorimetric technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号