首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The filamentous fungus Aspergillus nidulans grows by polarized extension of hyphal tips. The actin cytoskeleton is essential for polarized growth, but the role of microtubules has been controversial. To define the role of microtubules in tip growth, we used time-lapse microscopy to measure tip growth rates in germlings of A. nidulans and in multinucleate hyphal tip cells, and we used a green fluorescent protein-alpha-tubulin fusion to observe the effects of the antimicrotubule agent benomyl. Hyphal tip cells grew approximately 5 times faster than binucleate germlings. In germlings, cytoplasmic microtubules disassembled completely in mitosis. In hyphal tip cells, however, microtubules disassembled through most of the cytoplasm in mitosis but persisted in a region near the hyphal tip. The growth rate of hyphal tip cells did not change significantly in mitosis. Benomyl caused rapid disassembly of microtubules in tip cells and a 10x reduction in growth rate. When benomyl was washed out, microtubules assembled quickly and rapid tip growth resumed. These results demonstrate that although microtubules are not strictly required for polarized growth, they are rate-limiting for the growth of hyphal tip cells. These data also reveal that A. nidulans exhibits a remarkable spatial regulation of microtubule disassembly within hyphal tip cells.  相似文献   

2.
Growth of the filamentous fungus Aspergillus nidulans begins when the conidium breaks dormancy and grows isotropically. Eventually a germ tube emerges and the axis of growth remains fixed in the primary hypha while new growth axes are established basally to form secondary germ tubes and lateral branches. Rho1 is a Rho family GTPase that has been shown to be involved in polarity establishment and cell wall deposition in Saccharomyces cerevisiae. A gene predicted to encode a Rho1 homolog was cloned from A. nidulans and named rhoA. Strains carrying ectopic copies of the constitutively active rhoA(G14V) allele or the dominant rhoA(E40I) allele were created and characterized. The constitutively active rhoA(G14V) strain grew slowly relative to wild type and showed an abnormal clustered pattern of branch emergence. The rhoA(G14V) strain also labeled intensely with calcofluor, showed elevated levels of cell wall N-acetylglucosamine and had unusually thick cell walls. The dominant rhoA(E40I)strain was accelerated in the emergence of secondary and tertiary germ tubes, and lateral branches relative to wild type and showed lysis with prolonged incubation. The rhoA(E40I) strain also was hypersensitive to the cell wall disrupting agents calcofluor and caspofungin acetate and showed an increase in cell wall N-acetylglucosamine levels. Our results suggest that rhoA plays a role in polarity, proper branching pattern, and cell wall deposition.  相似文献   

3.
Polarized growth in filamentous fungi requires the integrity of the microtubule (MT) cytoskeleton. We found that growing MTs in Aspergillus nidulans merge at the center of fast growing tips and discovered that a kinesin motor protein, KipA, related to Tea2p of Schizosaccharomyces pombe, is required for this process. In a DeltakipA strain, MT plus ends reach the tip but show continuous lateral movement. Hyphae lose directionality and grow in curves, apparently due to mislocalization of the vesicle supply center (Spitzenk?rper) in the apex. Green fluorescent protein (GFP)-KipA accumulates at MT plus ends, whereas a KipA rigor mutant protein, GFP-KipA(G223E), coated MTs evenly. These findings suggest that KipA requires its intrinsic motor activity to reach the MT plus end. Using KipA as an MT plus-end marker, we found bidirectional organization of MTs and determined the locations of microtubule organizing centers at nuclei, in the cytoplasm, and at septa.  相似文献   

4.
In filamentous fungi, hyphal extension depends on the continuous delivery of vesicles to the growing tip. Here, we describe the identification of two cell end marker proteins, TeaA and TeaR, in Aspergillus nidulans, corresponding to Tea1 and Mod5 in Schizosaccharomyces pombe. Deletion of teaA or teaR caused zig-zag-growing and meandering hyphae, respectively. The Kelch-repeat protein TeaA, the putatively prenylated TeaR protein, and the formin SepA were highly concentrated in the Spitzenkörper, a vesicle transit station at the tip, and localized along the tip membrane. TeaA localization at tips depended on microtubules, and TeaA was required for microtuble convergence in the hyphal apex. The CENP-E family kinesin KipA was necessary for proper localization of TeaA and TeaR, but not for their transportation. TeaA and TeaR localization were interdependent. TeaA interacted in vivo with TeaR, and TeaA colocalized with SepA. Sterol-rich membrane domains localized at the tip in teaA and teaR mutants like in wild type, and filipin treatment caused mislocalization of both proteins. This suggests that sterol-rich membrane domains determine cell end factor destinations and thereby polarized growth.  相似文献   

5.
Free-living cells monitor extracellular 'osmotic strength' and respond metabolically to offset unfavourable osmotic intracellular solute concentrations. Here, we report the reconstruction of the Aspergillus nidulans salt stress-controlling MAP kinase pathway, based on homology analysis with known yeast genes. In A. nidulans, salt stress HOG genes, such as pbsA, hogA, ptpA and msnA, are upregulated when exposed to high concentrations of salt and, in a hogA deletion mutant (SIK1), the accumulation of pbsA is strongly reduced, suggesting a salt-specific feedback induction mechanism. Growth of SIK1 appears to be unchanged in unstressed cells, but hyphal extension rates are reduced by as much as 60% in the presence of salt. Microscopic observation revealed abnormal hyperbranched hyphal tips, disproportionate accumulation of nuclei and absence of septa. Thus, the inability to maintain turgor pressure depresses cell expansion and results in slower volume increases. In addition, SIK1 fails to partition the apical cell; thus, nuclei are not likely to arrest mitosis in interphase as in normal cells, but continue to divide, accumulating to high levels.  相似文献   

6.
7.
The multisubunit microtubule motor, cytoplasmic dynein, targets to various subcellular locations in eukaryotic cells for various functions. The cytoplasmic dynein heavy chain (HC) contains the microtubule binding and ATP binding sites for motor function, whereas the intermediate chain (IC) is implicated in the in vivo targeting of the HC. Concerning any targeting event, it is not known whether the IC has to form a complex with the HC for targeting or whether the IC can target to a site independently of the HC. In the filamentous fungus Aspergillus nidulans, the dynein HC is localized to the ends of microtubules near the hyphal tip. In this study, we demonstrate that our newly identified dynein IC in A. nidulans is also localized to microtubule ends and is required for HC's localization to microtubule ends in living cells. With the combination of two reagents, an HC loss-of function mutant and the green fluorescent protein (GFP)-fused IC that retains its function, we show that the IC's localization to microtubule ends also requires HC, suggesting that cytoplasmic dynein HC-IC complex formation is important for microtubule end targeting. In addition, we show that the HC localization is not apparently altered in the deletion mutant of NUDF, a LIS1-like protein that interacts directly with the ATP-binding domain of the HC. Our study suggests that, although HC-IC association is important for the targeting of dynein to microtubule ends, other essential components, such as NUDF, may interact with the targeted dynein complex to produce full motor activities in vivo.  相似文献   

8.
Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension.  相似文献   

9.
10.
Previous work suggests that changes in the phosphorylation state of some centrosomal proteins regulate centrosomal activity. The hypothesis that changes in the phosphorylation state of one or more basal body microtubule organizing centre (MTOC) components regulate its ability to nucleate cilia assembly in Tetrahymena thermophila was tested. The MPM-2 antibody, which recognizes phosphorylated epitopes in MTOCs in a variety of organisms, was used to probe immunoblots of cytoskeletal frameworks prepared from starved Tetrahymena, from starved deciliated Tetrahymena, and from a starved deciliated mutant Tetrahymena which failed to initiate ciliogenesis following deciliation. The MPM-2 antibody recognized an identical array of proteins in all blots. These results suggest that, unlike centrosomes, basal body MTOC activity is not regulated by changes in the phosphorylation state of component proteins.  相似文献   

11.
Filamentous fungi are ideal systems to study the process of polarized growth, as their life cycle is dominated by hyphal growth exclusively at the cell apex. The actin cytoskeleton plays an important role in this growth. Until now, there have been no tools to visualize actin or the actin-binding protein fimbrin in live cells of a filamentous fungus. We investigated the roles of actin (ActA) and fimbrin (FimA) in hyphal growth in Aspergillus nidulans . We examined the localization of ActA::GFP and FimA::GFP in live cells, and each displayed a similar localization pattern. In actively growing hyphae, cortical ActA::GFP and FimA::GFP patches were highly mobile throughout the hypha and were concentrated near hyphal apices. A patch-depleted zone occupied the apical 0.5 μm of growing hypha. Both FimA::GFP and Act::GFP also localize transiently to septa. Movement and later localization of both was compromised after cytochalasin treatment. Disruption of fimA resulted in delayed polarity establishment during conidium germination, abnormal hyphal growth and endocytosis defects in apolar cells. Endocytosis was severely impaired in apolar fimA disruption cells. Our data support a novel apical recycling model which indicates a critical role for actin patch-mediated endocytosis to maintain polarized growth at the apex.  相似文献   

12.
In the work, a study of cell growth and the regulation of heterologous glucoamylase synthesis under the control of the positively regulated alcA promoter in a recombinant Aspergillus nidulans is presented. We found that similar growth rates were obtained for both the host and recombinant cells when either glucose or fructose was employed as sole carbon and energy source. Use of the potent inducer cyclopentanone in concentrations greater than 3 mM resulted n maximum glucoamylase concentration and maximum overall specific glucoamylase concentration over 80 h of batch cultivation. However, cyclopentanone concentrations in excess of 3 mM also showed an inhibitory effect on spore germination as well as fungal growth. In contrast, another inducer, threonine, had no negative effect on spore germination even when concentrations of up to 100 mM were used with either glucose or fructose as carbon source. Glucoamylase synthesis in the presence of glucose plus either inducer did not begin until glucose was totally depleted, suggesting strong catabolite repression. Similar results were obtained when fructose was employed, although low levels of glucoamylase were detected before fructose depletion, suggesting partial catabolite repression. The highest enzyme concentration (570 mg/L) and overall specific enzyme concentration (81 mg/g cell) were observed in batch culture when cyclopentanone was the inducer and fructose the primary carbon source. A maximum glucoamylase concentration of 1.1 g/L and an overall specific glucoamylase concentration of 167 mg/g cell were obtained in a bioreactor using cyclopentanone as the inducer and limited-fructose feeding strategy, which nearly doubles the glucoamylase productivity from batch cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
The filamentous fungus Aspergillus nidulans has two genes encoding alpha-tubulin, tubA and tubB, which are differentially required at distinct stages during the life cycle. The tubA gene is required during vegetative growth for mitosis and nuclear migration (B. R. Oakley, C. E. Oakley, and J. E. Rinehart, Mol. Gen. Genet. 208:135-144, 1987; P. Doshi, C. A. Bossie, J. H. Doonan, G. S. May, and N. R. Morris, Mol. Gen. Genet. 225:129-141, 1991). The tubB gene is not required for any detectable aspect of vegetative growth or asexual reproduction but is essential during sexual development prior to the first meiotic division (K. E. Kirk and N. R. Morris, Genes Dev. 5:2014-2023, 1991). In this study, we determined whether the role of each alpha-tubulin gene is to provide a specific isotype necessary for a particular microtubule function or whether either alpha-tubulin isotype, if present in sufficient quantities, can participate effectively in all types of microtubule. Strains carrying a deletion allele of tubB (tubB delta) produce no ascospores from a cross. When one copy of a plasmid containing the region upstream of the tubB gene fused to the tubA coding region was integrated into a tubB delta strain, ascosporogenesis proceeded beyond the tubB delta block and resulted in the formation of sexual spores. However, irregular numbers of spores formed in some asci during development, and the ascospores had greatly diminished viability and aberrant morphologies. These defects were nearly corrected when two additional copies of the tubA coding region were integrated into the tubB delta strain. These results indicate that the tubA alpha-tubulin isotype can form functional microtubules during sexual development in the absence of tubB protein. In a reciprocal set of experiments, we examined whether upregulation of tubB can complement the tubA4 mutation, which causes supersensitivity to benomyl during vegetative growth. When tubA4 strains integrated a plasmid containing an alcohol-inducible promoter joined to the tubB coding region and subsequently overexpressed the tubB isotype, the benomyl supersensitivity normally caused by the tubA4 allele was relieved. These results indicate that when enough tubB alpha-tubulin is supplied, strains lacking functional tubA isotype can still form microtubules which effectively carry out mitosis and nuclear migration.  相似文献   

14.
Recurrent mutation and selection has been used to increase penicillin titre in two closely related strains of Aspergillus nidulans. A selection programme was initiated from each of the two strains (programmes A and B) and continued through six cycles of mutation and selection. Near-ultraviolet light in conjuction with 8-methoxypsoralen was employed as the sole mutagen throughout programme A and ethyl methanesulphonate as the sole mutagen throughout programme B. Excluding the first cycle of A, where only 50 strains were assayed, the selection programmes were identical. In each programme, 100 survivors were assayed for penicillin titre after each mutagenic treatment and, on the basis of a single yield test, the best five strains were picked and carried forward to the next cycle. In both selection programmes, a near 300% increase in penicillin titre was achieved. This yield advance illustrates the effectiveness for strain development of experimental designs involving successive cycles of mutagenesis with a single-stage screen and the selection of the top few percent survivors in each cycle.  相似文献   

15.
The calC2 mutation in Aspergillus nidulans causes hypersensitivity to Calcofluor White, along with other drug sensitivities that indicate a defect in cell wall integrity. We have cloned CalC by complementation, isolating the A. nidulans orthologue of protein kinase C (PkcA). The pkcA allele of the calC2 strain contains a mutation predicted to introduce a charged arginine residue in place of neutral glycine at a conserved site located immediately beside the C1B regulatory domain. Both PkcA and calC2 map to the same region of chromosome VIII. A PkcA::GFP chimera localizes to hyphal apices and growing septa, as well as to the conidiogenous apices of phialides, indicating a role for PkcA in polarized cell wall growth. These observations support the hypothesis that the role of PkcA in A. nidulans, is comparable to that played by Pkc1p in the Saccharomyces cerevisiae cell wall integrity pathway.  相似文献   

16.
《The Journal of cell biology》1989,109(4):1621-1631
We are interested in the relationship between the cytoskeleton and the organization of polarized cell morphology. We show here that the growth cones of hippocampal neurons in culture are specifically stained by a monoclonal antibody called 13H9. In other systems, the antigen recognized by 13H9 is associated with marginal bands of chicken erythrocytes and shows properties of both microtubule-and microfilament- associated proteins (Birgbauer, E., and F. Solomon. 1989 J. Cell Biol. 109:1609-1620). This dual nature is manifest in hippocampal neurons as well. At early stages after plating, the antibody stains the circumferential lamellipodia that mediate initial cell spreading. As processes emerge, 13H9 staining is heavily concentrated in the distal regions of growth cones, particularly in lamellipodial fans. In these cells, the 13H9 staining is complementary to the localization of assembled microtubules. It colocalizes partially, but not entirely, with phalloidin staining of assembled actin. Incubation with nocodazole rapidly induces microtubule depolymerization, which proceeds in the distal-to-proximal direction in the processes. At the same time, a rapid and dramatic redistribution of the 13H9 staining occurs; it delocalizes along the axon shaft, becoming clearly distinct from the phalloidin staining and always remaining distal to the receding front of assembled microtubules. After longer times without assembled microtubules, no staining of 13H9 can be detected. Removal of the nocodazole allows the microtubules to reform, in an ordered proximal-to- distal fashion. The 13H9 immunoreactivity also reappears, but only in the growth cones, not in any intermediate positions along the axon, and only after the reformation of microtubules is complete. The results indicate that the antigen recognized by 13H9 is highly concentrated in growth cones, closely associated with polymerized actin, and that its proper localization depends upon intact microtubules.  相似文献   

17.
We used immunofluorescent microscopy to characterize microtubule (MT) architecture in wild-type and mutant protoplasts of Aspergillus nidulans at interphase and at mitosis. Because the visualization of MTs by immunofluorescence is technically difficult in intact hyphae of A. nidulans, we developed a method for removing the cell wall under conditions that do not perturb cell physiology, as evidenced by the fact that the resulting protoplasts undergo nuclear division at a normal rate and that cell cycle mutant phenotypes are expressed at restrictive temperature. Interphase cells exhibited an extensive network of cytoplasmic MTs. During mitosis the cytoplasmic MTs mostly disappeared and an intranuclear mitotic spindle appeared. We have previously shown that the benA 33 beta-tubulin mutation causes hyperstabilization of the mitotic spindle, and we have presented additional indirect evidence that suggested that the tubA1 and tubA4 alpha-tubulin mutations destabilize spindle MTs. In this paper, we show that the benA33 mutation increases the stability of cytoplasmic MTs as well as spindle MTs and that the tubA1 and tubA4 mutations destabilize both spindle and cytoplasmic MTs.  相似文献   

18.
19.
The yeast bud site selection system represents a paradigm for understanding how fungal cells regulate the formation of a polarity axis. In Saccharomyces cerevisiae, Bud4 and Axl2 are components of the axial bud site marker. To address the possibility that these proteins regulate cellular morphogenesis in filamentous fungi, we have characterized homologues of Bud4 and Axl2 in Aspergillus nidulans. Our results show that Bud4 is involved in septum formation in both hyphae and developing conidiophores. Whereas Axl2 appears to have no obvious role in hyphal growth, it is required for the regulation of phialide morphogenesis during conidiation. In particular, Axl2 localizes to the phialide-spore junction, where it appears to promote the recruitment of septins. Furthermore, the developmental regulators BrlA and AbaA control the expression of Axl2. Additional studies indicate that Axl2 is also involved in the regulation of sexual development, not only in A. nidulans, but also in the phylogenetically unrelated fungus Fusarium graminearum. Our results suggest that Axl2 plays a key role in phialide morphogenesis and/or function during conidiation in the aspergilli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号