首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We produced antiserum to insulin-like growth factor I (IGF-I), and developed a specific and sensitive radioimmunoassay (RIA) for IGF-I using the biosynthetic IGF-I. This antiserum to IGF-I was specific for IGF-I; no cross-reactivities with multiplication stimulating activity, porcine insulin or human growth hormone (hGH) were detected. The sensitivity was 10-25 pg/tube with 50% displacement at 125 pg/tube. The intra- and inter-assay coefficients of variation for IGF-I were 5.4 and 9.7%, respectively. The plasma IGF-I levels as determined by RIA in normal adults (N = 46), patients with active acromegaly (N = 31), and pituitary dwarfs (N = 31) were 21.6 +/- 1.0, 157.3 +/- 17.0, and 2.5 +/- 0.3 ng/ml (Mean +/- SEM), respectively, indicating the levels were GH-dependent. The plasma IGF-I levels were significantly increased from 2.2 +/- 0.2 to 26.5 +/- 3.2 ng/ml after hGH administrations for three consecutive days in five pituitary dwarfs. The IGF-I levels were low in patients with hypothyroidism and liver cirrhosis, but were normal in patients with chronic renal failure. These data confirm previous reports and this radioimmunoassay proves useful in evaluating plasma IGF-I levels.  相似文献   

2.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

3.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

4.
5.
6.
Vascular endothelial growth factor (VEGF)/vascular permeability factor induces both angiogenesis and vascular permeability mainly through VEGF receptor (VEGFR)-2 activation. VEGF binds VEGFR-1 as well, but the importance of VEGFR-1 signaling in vascular permeability has been largely neglected. Here, we report the purification and characterization of a novel VEGF-like protein from Trimeresurus flavoviridis Habu snake venom. The Habu snake has a venom-specific VEGF-like molecule, T. flavoviridis snake venom VEGF (TfsvVEGF), in addition to VEGF-A. TfsvVEGF has almost 10-fold less mitotic activity than VEGF(165), a predominant isoform of human VEGF-A, but a similar effect on vascular permeability. TfsvVEGF bound VEGFR-1 and induced its autophosphorylation to almost the same extent as VEGF(165), but bound VEGFR-2 weakly and induced its autophosphorylation almost 10-fold less effectively than VEGF(165). This unique binding affinity for VEGFR-1 and VEGFR-2 leads to the vascular permeability-dominant activity of TfsvVEGF. These results suggest that Habu snakes have acquired a highly purposive molecule for a toxin, which enhances the toxicity in envenomation without inducing effective angiogenesis and the following regeneration of damaged tissues, taking advantage of the difference in signaling properties involving VEGFR-1 and VEGFR-2 between vascular permeability and angiogenesis. TfsvVEGF is thus a potent inducing factor selective for vascular permeability through preferential signaling via VEGFR-1. These data strongly indicate the importance of VEGFR-1 signaling in vascular permeability.  相似文献   

7.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

8.
Clark RG 《Hormone research》2004,62(Z1):93-100
Recombinant human (rh) insulin-like growth factor I (IGF-I) is being developed as a therapy for short stature caused by IGF deficiency (IGFD) and also for diabetes mellitus. To complement the human efficacy and safety data, a large amount of information is available regarding the pharmacology and toxicology of rhIGF-I in animals. This review summarizes the risks and benefits of normalizing blood IGF-I concentrations in IGFD, especially with regard to carcinogenicity, and compares and contrasts safety data for rhIGF-I, recombinant human growth hormone (rhGH), and insulin. A major difference between rhIGF-I and rhGH is that rhIGF-I (like insulin) has hypoglycaemic activity, whereas rhGH opposes insulin action and is diabetogenic. In most of their actions, GH and IGF-I are similar. IGF-I mediates most of the actions of GH, so the safety of rhGH and that of rhIGF-I also share many common features. In animals, the transgenic expression of hGH has been shown to act directly, by activating the prolactin receptor, to increase the incidence of mammary and prostate tumours. In comparison, the over-expression of IGF-I in animals or the administration of rhIGF-I does not have a carcinogenic effect. In formal toxicology and carcinogenicity studies, rhIGF-I has similar effects to insulin in that it can increase food intake, body size, and the growth rate of existing tumours. In animals and humans, IGFD has many long-term detrimental effects besides short stature: it increases the risk of diabetes, cardiovascular disease, and low bone mineral density. Therefore, a case can be made for replacement therapy with rhIGF-I to normalize blood IGF-I levels and reverse the detrimental effects of IGFD.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a major mediator of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to stimulate endothelial cell mitogenesis, and the potent induction of vascular permeability. These activities are at least in part mediated by binding to two high affinity receptors, VEGFR-1 and VEGFR-2. In this study we have made mutations of mouse VEGF in order to define the regions that are required for VEGFR-2-mediated functions. Development of a bioassay, which responds only to signals generated by cross-linking of VEGFR-2, has allowed evaluation of these mutants for their ability to activate VEGFR-2. One mutant (VEGF0), which had amino acids 83-89 of VEGF substituted with the analogous region of the related placenta growth factor, demonstrated significantly reduced VEGFR-2 binding compared with wild type VEGF, indicating that this region was required for VEGF-VEGFR-2 interaction. Intriguingly, when this mutant was evaluated in a Miles assay for its ability to induce vascular permeability, no difference was found when compared with wild type VEGF. In addition we have shown that the VEGF homology domain of the structurally related growth factor VEGF-D is capable of binding to and activating VEGFR-2 but has no vascular permeability activity, indicating that VEGFR-2 binding does not correlate with permeability activity for all VEGF family members. These data suggest different mechanisms for VEGF-mediated mitogenesis and vascular permeability and raise the possibility of an alternative receptor mediating vascular permeability.  相似文献   

10.
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.  相似文献   

11.
To determine whether the serum level of IGF-I influences its hepatic synthesis through negative feedback regulation, we infused 200 micrograms/d of human IGF-I subcutaneously into young male rats eating either an energy-restricted or ad lib diet. In energy-restricted rats, a two-fold increase in serum IGF-I concentration produced a 41% increase in growth rate at the end of one week, and a 30% decrease in steady state hepatic IGF-I mRNA and 56% drop in serum GH at the end of two weeks. In ad lib fed rats, the increased serum IGF-I concentration neither enhanced growth rate nor significantly reduced hepatic IGF-I mRNA abundance or serum GH levels. These data suggest that the abundance of hepatic IGF-I mRNA in energy-restricted rats is controlled, in part, by serum IGF-I levels via negative feedback regulation.  相似文献   

12.
13.
Studies of binding of IGF-I to a plasma-membrane-enriched subcellular fraction prepared from MCF-7 human breast cancer cells reveal the presence of 0.2 pmols specific binding sites for this mitogen per mg membrane protein, with an equilibrium affinity constant of 1.45 nM-1. Competition studies with insulin, IGF-II, and an anti-IGF-I receptor antibody are consistent with the presence of specific IGF-I receptors, and SDS-PAGE showed binding to a 130 kDa subunit identical to that of receptors from human placenta. In addition, we show that IGF-I is more potent than estradiol and comparable to EGF in stimulating in vitro proliferation of MCF-7 cells, and that IGF-I-stimulated proliferation of these cells is inhibited by a blocking monoclonal antibody against the IGF-I receptor. These results demonstrate that IGF-I is an important mitogen for MCF-7 cells and that the mitogenic effect is mediated by specific IGF-I receptors.  相似文献   

14.
The hyperpermeability of the microvasculature supplying solid tumors is largely attributable to a heterodimeric Mr 34,000-43,000 tumor-secreted protein, vascular permeability factor. Upon reduction, the vascular permeability factor secreted by line 10 tumor cells is resolved by SDS-PAGE into 3 discrete bands of Mr 24,000, 19,500, and 15,000. We demonstrate here that line 10 vascular permeability factor is an N-linked glycoprotein. Nonglycosylated vascular permeability factor migrates on reduced SDS-PAGE as two bands of Mr 20,000 and 15,000. Pulse-chase studies demonstrated that all three chains of native vascular permeability factor were secreted rapidly following synthesis and at equal rates, with a cellular half-retention time of approximately 37 min. When glycosylation was prevented by tunicamycin, individual bands of nonglycosylated vascular permeability factor were also secreted at equivalent rates, but much more slowly (approximately 60 min) than native glycoprotein. Both glycosylated and nonglycosylated forms of vascular permeability factor were equally potent at increasing dermal vessel permeability.  相似文献   

15.
Heparin and HS (heparan sulfate) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS binding to VEGF (vascular endothelial growth factor) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that the VEGF binding affinity likely depends on the specific structural features of these oligosaccharides, including their degree of sulfation, sugar-ring stereochemistry and conformation. Notably, the unique 3-O-sulfo group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue-specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs.  相似文献   

16.
17.
Insulin-like growth factor I (IGF-I) is a polypeptide hormone that regulates growth during all stages of development in vertebrates. To examine the mechanisms of the sexual growth dimorphism in the Tongue sole (Cynoglossus semilaevis), molecular cloning, expression analysis of IGF-I gene and IGF-I serum concentration analysis were performed. As a result, the IGF-I cDNA sequence is 911 bp, which contains an open reading frame (ORF) of 564 bp encoding a protein of 187 amino acids. The sex-specific tissue expression was analyzed by using 14 tissues from females, normal males and extra-large male adults. The IGF-I mRNA was predominantly expressed in liver, and the IGF-I expression levels in females and extra-large males were 1.9 and 10.2 times as much as those in normal males, respectively. Sex differences in IGF-I mRNA expressions at early life stages were also examined by using a full-sib family of C. semilaevis, and the IGF-I mRNA was detected at all of the 27 sampling points from 10 to 410 days old. An increase in IGF-I mRNA was detected after 190 day old fish. The significantly higher levels of IGF-I mRNA in females were observed after 190 days old in comparison with males (P < 0.01). The IGF-I concentrations in serum of mature individuals were detected by ELISA. The IGF-I level in the serum of females was approximately two times as much as that of males. Consequently, IGF-I may play an important role in the endocrine regulation of the sexually dimorphic growth of C. semilaevis.  相似文献   

18.
By means of a cloning strategy employing the polymerase chain reaction, we have isolated and characterized cDNAs for Xenopus laevis insulin-like growth factor I (IGF-I). These cDNAs encode a primary IGF-I translation product of 153 residues that demonstrates considerable amino acid sequence similarity with IGF-IA peptides from other species. Fifty-seven of 70 residues of the mature protein are identical among human, rat, chicken, and Xenopus IGF-I, while less amino acid conservation is found at the COOH-terminus (25/35 identities) or at the NH2-terminus (24/48 identities) of the precursor protein. Despite the lower degree of structural similarity at the NH2-terminus, in vitro studies of IGF-I biosynthesis and proteolytic processing support a conserved function for the atypically long 48 residue NH2-terminal signal sequence in directing the nascent IGF-I peptide through the secretory pathway. The 5'-untranslated region of Xenopus IGF-I mRNA matches the human, rat, and chicken sequences in greater than 90% of 279 nucleotides. IGF-I mRNAs from all four species encode a conserved upstream open reading frame of 14 amino acids starting 240-250 nucleotides 5' to the translation start site, suggesting a possible role for this region in modulating IGF-I gene expression. The X. laevis IGF-I gene is transcribed and processed into three mRNAs of 1.6, 2.1, and 3.0 kilobases in liver, and IGF-I mRNAs can be detected in liver, lung, heart, kidney, and peritoneal fat of adult animals. These studies demonstrate that both the IGF-I protein precursor and potential regulatory regions of IGF-I mRNA have been conserved during vertebrate evolution, and indicate that like several other polypeptide growth factors, IGF-I may be of fundamental importance in regulating specific aspects of growth and development in all vertebrates.  相似文献   

19.
Insulin-like growth factor I (IGF-I) levels in urine were measured in adults using specific RIA after extraction with acid-ammonium sulfate. Mean (+/- SD) total urine IGF-I values were 267.9 +/- 112.9 ng/day and 167.8 +/- 73.2 ng/g creatinine (Cr) in 17 normal young adults. There was a positive correlation (r = 0.785, P < 0.001) between IGF-I values in early morning urine and those of 24 h urine when they were corrected by urinary Cr. IGF-I values in early morning urine were ranged from 60 to 1,100 ng/gCr with a mean value of 309.6 ng/gCr in 178 normal adults aged 21-80 yr. There was a consistent trend towards higher urinary IGF-I values in males during aging and this trend did not reach statistical significance until the sixth and seventh decades. There was a positive correlation (r = 0.465, P < 0.005) between urinary IGF-I values and age in males but not in females. Although urinary IGF-I values were higher in females than in males of the second and third decades, no sex difference was found in older adults. Urinary IGF-I values were correlated reversely with 24 h Cr clearance (CCr) and positively with urinary beta 2-microglobulin (beta 2-MG) levels in patients with renal dysfunction. These findings indicate that urinary IGF-I levels are influenced by age, sex and renal function in adults.  相似文献   

20.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor-tyrosine kinases, Flt-1 (VEGF receptor (VEGFR)-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell proliferation and migration, whereas Flt-1 down-modulates KDR-mediated endothelial cell proliferation. Our most recent works show that pertussis toxin-sensitive G proteins and Gbetagamma subunits are required for Flt-1-mediated down-regulation of human umbilical vein endothelial cell (HUVEC) proliferation and that Gq/11 proteins are required for KDR-mediated RhoA activation and HUVEC migration. In this study, we demonstrate that Gq/11 proteins are also required for VPF/VEGF-stimulated HUVEC proliferation. Our results further indicate that Gq/11 proteins specifically mediate KDR signaling such as intracellular Ca2+ mobilization rather than Flt-1-induced CDC42 activation and that a Gq/11 antisense oligonucleotide completely inhibits MAPK phosphorylation induced by KDR but has no effect on Flt-1-induced MAPK activation. More importantly, we demonstrate that Gq/11 proteins interact with KDR in vivo, and the interaction of Gq/11 proteins with KDR does not require KDR tyrosine phosphorylation. Surprisingly, the Gq/11 antisense oligonucleotide completely inhibits VPF/VEGF-stimulated KDR phosphorylation. Expression of a constitutively active mutant of G11 but not Gq can cause phosphorylation of KDR and MAPK. In addition, a Gbetagamma minigene, hbetaARK1(495), inhibits VPF/VEGF-stimulated HUVEC proliferation, MAPK phosphorylation, and intracellular Ca2+ mobilization but has no effect on KDR phosphorylation. Taken together, this study demonstrates that Gq/11 proteins mediate KDR tyrosine phosphorylation and KDR-mediated HUVEC proliferation through interaction with KDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号