首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid protozoa, is a network containing several thousand topologically interlocked DNA minicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles, and reattachment of the progeny back onto the network. One enzyme involved in this process is structure-specific endonuclease-I. This enzyme, originally purified from Crithidia fasciculata, has been proposed to remove minicircle replication primers (Engel, M. L., and Ray, D. S. (1998) Nucleic Acids Res. 26, 4773-4778). We have studied the structure-specific endonuclease-I homolog from Trypanosoma brucei, showing it to be localized in the antipodal sites flanking the kinetoplast DNA disk, as previously shown in C. fasciculata. RNA interference of structure-specific endonuclease-I caused persistence of a single ribonucleotide at the 5' end of both the leading strand and at least the first Okazaki fragment in network minicircles, demonstrating that this enzyme in fact functions in primer removal. Probably because of the persistence of primers, RNA interference also impeded the reattachment of newly replicated free minicircles to the network and caused a delay in kinetoplast DNA segregation. These effects ultimately led to shrinkage and loss of the kinetoplast DNA network and cessation of growth of the cell.  相似文献   

2.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.  相似文献   

3.
Hines JC  Ray DS 《Eukaryotic cell》2011,10(3):445-454
The mitochondrial DNA of trypanosomes contains two types of circular DNAs, minicircles and maxicircles. Both minicircles and maxicircles replicate from specific replication origins by unidirectional theta-type intermediates. Initiation of the minicircle leading strand and also that of at least the first Okazaki fragment involve RNA priming. The Trypanosoma brucei genome encodes two mitochondrial DNA primases, PRI1 and PRI2, related to the primases of eukaryotic nucleocytoplasmic large DNA viruses. These primases are members of the archeoeukaryotic primase superfamily, and each of them contain an RNA recognition motif and a PriCT-2 motif. In Leishmania species, PRI2 proteins are approximately 61 to 66 kDa in size, whereas in Trypanosoma species, PRI2 proteins have additional long amino-terminal extensions. RNA interference (RNAi) of T. brucei PRI2 resulted in the loss of kinetoplast DNA and accumulation of covalently closed free minicircles. Recombinant PRI2 lacking this extension (PRI2ΔNT) primes poly(dA) synthesis on a poly(dT) template in an ATP-dependent manner. Mutation of two conserved aspartate residues (PRI2ΔNTCS) resulted in loss of enzymatic activity but not loss of DNA binding. We propose that PRI2 is directly involved in initiating kinetoplast minicircle replication.  相似文献   

4.
The kinetoplast DNA of trypanosomes is comprised of thousands of DNA minicircles and 20-50 maxicircles catenated into a single network. Replication intermediates of minicircle DNA from the trypanosomatid species Crithidia fasciculata contain site-specific discontinuities in both heavy (H) and light (L) strands. These discontinuities map to two small regions situated 180 degrees apart on the minicircle; each region has two sites at which a discontinuity can occur, one on each strand. We have determined the position of these discontinuities on the minicircle DNA sequence and have characterized their structure. H-strand discontinuities occur within a 4-5-nucleotide sequence and consist of single nicks, only one of which appears to be a DNA-DNA junction. Characterization of the remaining H-strand nicks indicates a structure other than a typical DNA-DNA or DNA-RNA junction. Discontinuities on the L-strand can be either a nick or a short gap which overlaps a 12-nucleotide sequence universally conserved among minicircles from various trypanosome species. Up to 6 nucleotides are hydrolyzed from the 5' terminus facing the gap upon treatment with alkali, suggesting the presence of an RNA primer. Based on the structures of minicircle replication intermediates, we present a model for replication of minicircle DNA in which the site-specific discontinuities closely coincide with the origins of replication.  相似文献   

5.
Trypanosoma brucei''s mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei''s six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.  相似文献   

6.
DNA minicircles found within the kinetoplast of the trypanosomatid Crithidia fasciculata, like those of most other kinetoplastid species, are heterogeneous in sequence. The pattern of minicircle DNA fragments generated by cleavage of kinetoplast DNA with various restriction enzymes has been used to demonstrate this heterogeneity. Here we describe a strain of Crithidia fasciculata in which more than 90% of the DNA minicircles exhibit a common pattern of restriction enzyme cleavage sites. A map of cleavage sites within this major minicircle DNA class is presented for seven restriction enzymes with hexanucleotide recognition sequences. Sequence homogeneity at an even finer level is reflected in minicircle DNA digestion patterns generated by restriction enzymes with tetranucleotide recognition sites. Partial DNA sequence analysis of multiple clones from the major minicircle class shows nearly complete homogeneity at the nucleotide level. The existence of a near homogeneous complement of DNA minicircles in Crithidia should facilitate the study of their replication in this organism.  相似文献   

7.
8.
The mitochondrial genome of trypanosomes, termed kinetoplast DNA (kDNA), contains thousands of minicircles and dozens of maxicircles topologically interlocked in a network. To identify proteins involved in network replication, we screened an inducible RNA interference-based genomic library for cells that lose kinetoplast DNA. In one cloned cell line with inducible kinetoplast DNA loss, we found that the RNA interference vector had aberrantly integrated into the genome resulting in overexpression of genes down-stream of the integration site (Motyka, S. A., Zhao, Z., Gull, K., and Englund, P. T. (2004) Mol. Biochem. Parasitol. 134, 163-167). We now report that the relevant overexpressed gene encodes a mitochondrial cytochrome b(5) reductase-like protein. This overexpression caused kDNA loss by oxidation/inactivation of the universal minicircle sequence-binding protein, which normally binds the minicircle replication origin and triggers replication. The rapid loss of maxicircles suggests that the universal minicircle sequence-binding protein might also control maxicircle replication. Several lines of evidence indicate that the cytochrome b(5) reductase-like protein controls the oxidization status of the universal minicircle sequence-binding protein via tryparedoxin, a mitochondrial redox protein. For example, overexpression of mitochondrial tryparedoxin peroxidase, which utilizes tryparedoxin, also caused oxidation of the universal minicircle sequence-binding protein and kDNA loss. Furthermore, the growth defect caused by overexpression of cytochrome b(5) reductase-like protein could be partially rescued by simultaneously overexpressing tryparedoxin.  相似文献   

9.
The kinetoplast DNA (kDNA) of trypanosomes is comprised of thousands of DNA minicircles and 20-50 maxicircles catenated into a single network. We show that kinetoplasts isolated from the trypanosomatid species Crithidia fasciculata incorporate labeled nucleotides and support minicircle DNA replication in a manner which mimics two characteristics of minicircle replication in vivo: 1) the minicircles are replicated as free molecules and subsequently reattached to the kDNA network, and 2) a replication intermediate having a structure consistent with a highly gapped minicircle species is generated. In addition, a class of minicircle DNA replication intermediates is observed containing discontinuities at specific sites within each of the newly synthesized DNA strands. By using a strain of C. fasciculata possessing nearly homogenous minicircles, we were able to map the discontinuities to two small regions situated 180 degrees apart on the minicircle. Each region has two sites at which a discontinuity can occur, one on each strand and separated by approximately 100 base pairs. These sites may represent origins of minicircle DNA replication.  相似文献   

10.
11.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid parasites, is a network containing several thousand minicircles and a few dozen maxicircles. We compared kinetoplast DNA replication in Trypanosoma brucei and Crithidia fasciculata using fluorescence in situ hybridization and electron microscopy of isolated networks. One difference is in the location of maxicircles in situ. In C. fasciculata, maxicircles are concentrated in discrete foci embedded in the kinetoplast disk; during replication the foci increase in number but remain scattered throughout the disk. In contrast, T. brucei maxicircles generally fill the entire disk. Unlike those in C. fasciculata, T. brucei maxicircles become highly concentrated in the central region of the kinetoplast after replication; then during segregation they redistribute throughout the daughter kinetoplasts. T. brucei and C. fasciculata also differ in the pattern of attachment of newly synthesized minicircles to the network. In C. fasciculata it was known that minicircles are attached at two antipodal sites but subsequently are found uniformly distributed around the network periphery, possibly due to a relative movement of the kinetoplast disk and two protein complexes responsible for minicircle synthesis and attachment. In T. brucei, minicircles appear to be attached at two antipodal sites but then remain concentrated in these two regions. Therefore, the relative movement of the kinetoplast and the two protein complexes may not occur in T. brucei.  相似文献   

12.
M Ferguson  A F Torri  D C Ward  P T Englund 《Cell》1992,70(4):621-629
Kinetoplast DNA is a network of interlocked minicircles and maxicircles. In situ hybridization, using probes detected by digital fluorescence microscopy, has clarified the in vivo structure and replication mechanism of the network. The probe recognizes only nicked minicircles. Hybridization reveals prereplication kinetoplasts (with closed minicircles), donut-shaped replicating kinetoplasts (with nicked minicircles on the periphery and closed minicircles in the center), and postreplication kinetoplasts (with nicked minicircles). Replicating kinetoplasts are associated with two peripheral structures containing free minicircle replication intermediates and DNA polymerase. Replication may involve release of closed minicircles from the center of the kinetoplast and their migration to the peripheral structures, replication of the free minicircles therein, and then peripheral reattachment of the progeny minicircles to the kinetoplast.  相似文献   

13.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

14.
Wang Z  Englund PT 《The EMBO journal》2001,20(17):4674-4683
We studied the function of a Trypanosoma brucei topoisomerase II using RNA interference (RNAi). Expression of a topoisomerase II double-stranded RNA as a stem-loop caused specific degradation of mRNA followed by loss of protein. After 6 days of RNAi, the parasites' growth rate declined and the cells subsequently died. The most striking phenotype upon induction of RNAi was the loss of kinetoplast DNA (kDNA), the cell's catenated mitochondrial DNA network. The loss of kDNA was preceded by gradual shrinkage of the network and accumulation of gapped free minicircle replication intermediates. These facts, together with the localization of the enzyme in two antipodal sites flanking the kDNA, show that a function of this topoisomerase II is to attach free minicircles to the network periphery following their replication.  相似文献   

15.
16.
The unique mitochondrial DNA of trypanosomes is a catenated network of minicircles and maxicircles called kinetoplast DNA (kDNA). The network is essential for survival, and requires an elaborate topoisomerase‐mediated release and reattachment mechanism for minicircle theta structure replication. At least seven DNA polymerases (pols) are involved in kDNA transactions, including three essential proteins related to bacterial DNA pol I (POLIB, POLIC and POLID). How Trypanosoma brucei utilizes multiple DNA pols to complete the topologically complex task of kDNA replication is unknown. To fill this gap in knowledge we investigated the cellular role of POLIB using RNA interference (RNAi). POLIB silencing resulted in growth inhibition and progressive loss of kDNA networks. Additionally, unreplicated covalently closed precursors become the most abundant minicircle replication intermediate as minicircle copy number declines. Leading and lagging strand minicircle progeny similarly declined during POLIB silencing, indicating POLIB had no apparent strand preference. Interestingly, POLIB RNAi led to the accumulation of a novel population of free minicircles that is composed mainly of covalently closed minicircle dimers. Based on these data, we propose that POLIB performs an essential role at the core of the minicircle replication machinery.  相似文献   

17.
ABSTRACT. The restriction enzyme digestion of kinetoplast DNA from four Phytomonas serpens isolates shows an overall similar band pattern. One minicircle from isolate 30T was cloned and sequenced, showing low levels of homology but the same general features and organization as described for minicircles of other trypanosomatids. Extensive regions of the minicircle are composed by G and T on the H strand. These regions are very repetitive and similar to regions in a minicircle of Crithidia oncopelti and to telomeric sequences of Saccharomyces cerevisiae. Conserved Sequence Block 3, present in all trypanosomatids, is one nucleotide different from the consensus in P. serpens and provides a basis to differentiate P. serpens from other trypanosomatids. Electron microscopy of kinetoplast DNA evidenced a network with organization similar to other trypanosomatids and the measurement of minicircles confirmed the size of about 1.45 kb of the sequenced minicircle.  相似文献   

18.
19.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is a remarkable DNA structure that contains, in the species Crithidia fasciculata, 5000 topologically linked duplex DNA minicircles. Their replication initiates at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L and H strands, respectively. A UMS-binding protein (UMSBP) binds specifically the 12-mer UMS sequence and a 14-mer sequence that contains the conserved hexamer in their single-stranded DNA conformation. In vivo cross-linking analyses reveal the binding of UMSBP to kinetoplast DNA networks in the cell. Furthermore, UMSBP binds in vitro to native minicircle origin fragments, carrying the UMSBP recognition sequences. UMSBP binding at the replication origin induces conformational changes in the bound DNA through its folding, aggregation and condensation.  相似文献   

20.
Etoposide, a nonintercalating antitumor drug, is a potent inhibitor of topoisomerase II activity. When Trypanosoma equiperdum is treated with etoposide, cleavable complexes are stabilized between topoisomerase II and kinetoplast DNA minicircles, a component of trypanosome mitochondrial DNA (T. A. Shapiro, V. A. Klein, and P. T. Englund, J. Biol. Chem. 264:4173-4178, 1989). Etoposide also promotes the time-dependent accumulation of small minicircle catenanes. These catenanes are radiolabeled in vivo with [3H]thymidine. Dimers are most abundant, but novel structures containing up to five noncovalently closed minicircles are detectable. Analysis by two-dimensional gel electrophoresis and electron microscopy indicates that dimers joined by up to six interlocks are late replication intermediates that accumulate when topoisomerase II activity is blocked. The requirement for topoisomerase II is particularly interesting because minicircles do not share the features postulated to make this enzyme essential in other systems: for minicircles, the replication fork is unidirectional, access to the DNA is not blocked by nucleosomes, and daughter circles are extensively nicked and (or) gapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号