首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

2.
Human alveolar macrophage have three distinct receptors for IgG: FcRI, FcRII, and FcRIII. In order to compare the ability of these receptors to mediate target cell lysis, three different assay systems were examined. First, we studied lysis of chicken E (CE) opsonized with heteroantibodies, which are synthetic antibodies composed of Fab fragments with anti-FcR activity covalently linked to Fab fragments with anti-CE activity. We found alveolar macrophage readily lysed heteroantibody-opsonized CE via each of the three FcR classes (FcRI, 20 +/- 5%; FcRII, 27 +/- 7%; and FcRIII, 13 +/- 13%, p less than 0.05). Non-FcR-dependent lysis of anti-beta 2-microglobulin x anti-CE heteroantibody-opsonized CE was not detected. Second, lysis of hybridoma cell lines bearing anti-FcR antibodies on their cell surface was examined to assess killing of "tumor-like" target cells. Whereas peripheral blood monocytes and lymphocytes were able to lyse hybridoma cell lines bearing surface anti-FcR mAb, alveolar macrophages were not. Third, activity of alveolar macrophage FcR was examined in a conventional antibody-dependent cellular cytotoxicity assay by using O+ (R1,R2) human RBC opsonized with human anti-D and anti-CD serum as target cells. We found lysis of anti-D and anti-CD opsonized human RBC was mediated exclusively via FcRI. No activity of FcRII or FcRIII was detected in these latter assays even if performed under conditions that impair FcRI activity. Thus, all three FcR present on alveolar macrophage mediate lysis of heteroantibody-opsonized CE; in contrast, with the use of a conventional antibody-dependent cellular cytotoxicity assay, only FcRI activity was detected. We were unable to demonstrate lysis of anti-FcR-bearing hybridoma cell lines by alveolar macrophages.  相似文献   

3.
NK cells are large granular lymphocytes capable of killing certain tumor cells and virally infected cells in a non-MHC-restricted manner. NK cells can also effect an antibody dependent cytotoxicity that is triggered by CD16, an FcR for IgG. In NK cells, CD16 is expressed in association with zeta, a signal transducing subunit of the TCR complex. Here we show that, just as T cell activation via the TCR complex results in tyrosine phosphorylation of zeta TCR, NK cell activation via CD16 results in tyrosine phosphorylation of zeta NK. Whereas antibody-dependent cytotoxicity also results in tyrosine phosphorylation of zeta, natural cytotoxicity does not. Our results indicate that zeta functions as a transducing element for antibody dependent, but not antibody independent killing by NK cells. Consequently, NK cells are likely to express at least two distinct receptor complexes capable of triggering cytolytic effector function.  相似文献   

4.
NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.  相似文献   

5.
Structural polymorphism of the human platelet Fc gamma receptor   总被引:1,自引:0,他引:1  
A variable T lymphocyte proliferative response to murine IgG1 anti-T3 monoclonal antibodies, in which most North American Caucasians respond whereas a minority do not, is well established. This is most likely the result of a genetic polymorphism manifested by 1) the inability of the monocyte 40-kDa IgG FcR of some individuals to bind murine IgG1, and 2) a distinctive trimorphic pattern on IEF of the monocyte 40-kDa FcR, one form being seen in all individuals who do not respond and another form (or a combination of both forms) being seen in those who do respond. We have evaluated the IEF patterns of the platelet 40-kDa FcR and find that in every individual tested the pattern for platelet FcR correlates with that seen for the monocyte 40-kDa FcR pattern. Furthermore, the platelets of those individuals whose "nonresponder" monocyte 40-kDa FcR did not mediate a murine IgG1 anti-T3 response did not respond with an aggregation reaction to murine IgG1 immune complexes (opsonized E). In contrast, platelets from donors possessing "responder" monocytes displayed positive "aggregation" responses to E coated with murine IgG1 antibody. However, the platelet FcR structural polymorphism described earlier did not correlate with the donor-specific variability in capacity of platelets to respond functionally to aggregated human IgG described in an earlier paper. Rather, the variation in capacity of platelets from individual donors to respond functionally to aggregated human IgG was related to the quantitative expression of platelet FcR. These data indicate that the molecular mechanisms responsible for the platelet 40-kDa FcR structural polymorphism are quite different from the mechanisms governing the variation in quantitative expression of the receptor.  相似文献   

6.
Natural killer (NK)3 cells are large granular lymphocytes that appear to play a significant role in the host's defense against viral infection. We performed an extensive phenotypic and functional characterization of NK cells on 41 patients with the chronic fatigue syndrome (CFS), or "chronic active Epstein-Barr virus infection" syndrome, and on 23 age- and sex-matched asymptomatic control subjects in an attempt to further characterize this illness. These studies demonstrated that a majority of patients with CFS have low numbers of NKH1+T3- lymphocytes, a population that represents the great majority of NK cells in normal individuals. CFS patients had normal numbers of NKH1+T3+ lymphocytes, a population that represents a relatively small fraction of NK cells in normal individuals. When tested for cytotoxicity against a variety of different target cells, patients with CFS consistently demonstrated low levels of killing. After activation of cytolytic activity with recombinant interleukin 2, patients were able to display increased killing against K562 but most patients remained unable to lyse Epstein-Barr virus-infected B cell targets. Additional cytotoxicity experiments were carried out utilizing anti-T3 monoclonal antibody to block killing by NKH1+T3+ cells. These experiments indicated that the NK cell that appears to be responsible for much of the functional activity remaining in patients with CFS belongs to the NKH1+T3+ subset, which under normal circumstances represents only approximately 20% of the NK cell population.  相似文献   

7.
The T11 (CD2) antigen has been found to be an alternate pathway for antigen-independent activation of resting T cells. T11 triggering also results in activation of NK cells and enhancement of their cytolytic function. The present studies were carried out to further define the mechanisms whereby cytotoxicity is enhanced after T11 activation. A series of clonal human NK cell lines were analyzed after incubation with monoclonal anti-T112 and anti-T113 antibodies specific for different epitopes of the CD2 protein. Anti-T112/3 triggering resulted in increased cytotoxicity against a variety of target cells. Similar results were obtained with F(ab')2 fragments of anti-T112/3, indicating that this effect was not mediated through binding of FcR. The induction of cytotoxicity was found to be associated with increased formation of effector cell-target cell conjugates and with release of secretory granule-localized 35S-labeled proteoglycans. Both enhanced conjugate formation and cytotoxicity could be blocked by anti-lymphocyte function-associated antigen (LFA-1) mAb. Ultrastructural analysis of NK cells after T11 activation demonstrated increased adherence of effector cells to targets and other NK cells as well as a directional reorientation of cytoplasm and intracellular granules toward the area of contact between cells. Discharge of granules occurred into pockets bounded by closely apposed plasma membranes. In the presence of anti-LFA-1 and anti-T112/3, the close apposition and formation of pockets between effector cells and target cells did not occur but the cells exocytosed their intracellular granules. T11 activation of NK cloned cells also resulted in the formation of the homotypic conjugates and autocytotoxicity. As seen with resistant allogeneic targets, autocytotoxicity was mediated by F(ab')2 fragments of T112/3 antibodies and could be blocked by anti-LFA-1 antibody. Ultrastructural analysis of NK cloned cells after T11 activation confirmed the presence of homotypic conjugates with reorientation of effector cells toward one another and discharge of cytolytic granules into pockets formed between NK cloned cells. Taken together, these results indicate that T11-induced cytolytic function of NK cells is, in part, mediated through increased binding of effector cells and targets and that enhanced conjugate formation is at least in part mediated by the LFA-1 antigen. In addition, T11 activation results in the triggering of the cytolytic mechanism of NK cells and the exocytosis of cytolytic granules and their constituents.  相似文献   

8.
We studied the mechanisms whereby human T cells and NK cells are activated and directed to lyse tumor targets through the CD2 (T11/E-rosette) Ag. Using two cloned NK lines, we showed that these cells, as had previously been shown for T cells, could be directed to lyse an "NK-resistant" tumor target in the presence of antibody heterodimers. These heterodimers consisted of a (mAb) to CD2 (anti-T11(2) or anti-T11(3] linked to a mAb recognizing the tumor cell (J5, anti-CALLA). However, distinct differences between NK cells and T cells were observed with regard to the requirements for such directed lysis: first, only one epitope of CD2 on NK cells (either T11(2) or T11(3] needed to be recognized by the antibody heterodimer in order for directed lysis to occur, whereas for T cells both T11(2) and T11(3) epitopes had to be recognized. Second, in confirmation of previous data with monomeric anti-T11(2) or anti-T11(3) antibody, heterodimers constructed with these reagents enhanced conjugate formation between NK cells and tumor targets, whereas no such enhancement was seen with T cells. All types of heterodimer directed lysis were dependent on the adhesion molecule LFA-1, as an anti-LFA-1 antibody-blocked lysis. Third, whereas in T cells lysis mediated through CD2 appeared to be regulated by CD3 but not vice versa, all types of lysis by NK cells appeared to be regulated through CD2. Finally we showed that F(ab')2 fragments of the anti-T11(2) and anti-T11(3) antibodies could activate NK cells, but were unable to activate T cells either as cloned cytolytic lines, or in populations of PBL. The implications of our findings with regard to the role of CD2 in the activation of cytolytic cells is discussed.  相似文献   

9.
NKR-P1 is a 60-kDa homodimer expressed on all rat NK cells. Previous studies by others suggest that NKR-P1 may play a role in NK cell activation because antibody to NKR-P1 stimulates the release of granules from NK cells, and anti-NKR-P1 causes redirected lysis by activated NK cells against targets that express FcR. To examine the mechanism of transmembrane signaling by NKR-P1, we studied the rat NK cell line, RNK-16. We here demonstrate that F(ab')2 antibody to NKR-P1 stimulates phosphoinositide turnover and a rise in intracellular calcium within RNK-16 cells. The response is augmented by cross-linking the F(ab')2 antibody. The phosphoinositide/calcium pathway is also stimulated by NKR-P1 in activated rat NK cells, although no response is detectable in polymorphonuclear cells, which also express NKR-P1. We also demonstrate that RNK-16 cells kill the anti-NKR-P1 (3.2.3) hybridoma and that exposure to the hybridoma target cells stimulates phosphoinositide turnover in RNK-16 cells. Both killing and phosphoinositide turnover are inhibited by F(ab')2 anti-NKR-P1, implicating NKR-P1 in both responses. In contrast, neither cytotoxicity nor phosphoinositide turnover is appreciably blocked by F(ab')2 anti-NKR-P1 in response to YAC-1 targets. Thus, with either target, killing is linked to phosphoinositide turnover, but killing of YAC-1 involves pathways that differ from those that direct killing of the anti-NKR-P1 hybridoma. Our studies support the hypothesis that NKR-P1 may serve as an activating cell-surface receptor on NK cells, and they clarify the mechanisms by which it activates NK cells.  相似文献   

10.
NK cells can mediate either FcR-dependent cytotoxicity against antibody-coated target cells or direct cytotoxicity against a variety of tumor cells. We used homogeneous, cloned populations of CD16+/CD3- human NK cells to characterize and compare the transmembrane signaling mechanisms used during these alternative forms of cytotoxicity. Cross-linkage of NK cell FcR with anti-FcR (anti-CD16) mAb or direct binding to NK-sensitive tumor targets resulted in a rapid release of inositol phosphates and increases in [Ca2+]i. The receptor-dependent [Ca2+]i increase (as monitored in indo-1 loaded NK cells by flow cytometry) consisted of an initial release of calcium from intracellular stores, followed by a sustained influx of calcium across the plasma membrane. To assess the potential regulatory feedback role of protein kinase C (PKC) activation in these proximal signaling events, NK cells were pretreated with either PKC-activating phorbol esters, nonactivating phorbol ester homologs, or synthetic diacylglycerols. Brief pretreatment with activating phorbol esters rapidly inhibited, in a concentration-dependent manner, both phosphoinositide hydrolysis and increases in [Ca2+]i induced by FcR ligation, whereas pretreatment with an inactive phorbol ester had no effect. This acute inhibitory effect was not explained by FcR down-regulation, which occurred with more prolonged exposure to phorbol esters. In contrast, the phosphoinositide turnover and [Ca2+]i increase in NK cells stimulated with NK-sensitive tumor targets were not affected by prior exposure to PKC-activating phorbol esters. This differential regulatory effect of phorbol ester on proximal signaling was paralleled by a corresponding effect on cytotoxicity, i.e., phorbol ester-induced activation of PKC inhibited FcR-dependent cytotoxicity, but did not alter direct cytotoxicity against NK-sensitive tumor cells. These results indicate that PKC activation can differentially regulate alternative forms of NK cell-mediated cytotoxicity by rapidly and specifically desensitizing the FcR.  相似文献   

11.
In the present studies we analyzed the role of LFA-1 antigens in the interaction between NK clones and target cells. The use of various cloned NK cell lines allowed us to analyze homogeneous populations of NK cells which ordinarily comprise only a small fraction of peripheral blood lymphocytes and are extremely heterogeneous with respect to phenotype and specificity. Indirect immunofluorescence with monoclonal antibodies against the alpha (MHM24) and beta (MHM23) chains of the LFA-1 antigen revealed similar patterns of positive reactivity with all NK clones. Both monoclonal antibodies exerted a significant blocking effect on NK cytotoxicity against target cells such as Molt-4 and CEM, whereas the inhibition was very weak against other targets such as K562 and HSB cells. Additive blocking effects were seen when both monoclonal antibodies MHM23 and MHM24 were added to the cytotoxicity assays. When we compared the inhibitory effect of MHM23 and MHM24 on uncultured peripheral blood NK cells and IL 2-activated NK cells, inhibition of cytotoxicity also was found to be primarily dependent on the individual target cells. Thus, the inhibitory activity of anti-LFA-1 antibody was shown to be independent of the phenotypic and functional heterogeneity of the NK clones, activated NK cells, and unstimulated NK cells utilized in these studies. These blocking effects were found to be independent of the LFA-1 antigen expression on the target cell membrane and inhibition occurred only when antibody was bound to the effector cells. Comparison of the effects of anti-LFA-1, anti-T3, and anti-clonotypic antibodies against a Ti-like structure of different NK clones with a mature T cell phenotype demonstrated that each of these antibodies acts on the effector cells in an independent and additive fashion. However, unlike T3 and NKTa antigen, LFA-1 antigen expression is not modulated by cell surface interaction with antibodies specific for this molecule.  相似文献   

12.
We recently reported the preparation and characterization of a monoclonal antibody, 32.2, specific for the high-affinity Fc receptor (FcR) for IgG on human monocytes. We have utilized the hybridoma cell line producing this antibody as a target for monocyte-mediated cytotoxicity. The hybridoma was selected for stable sublines that expressed high quantities of surface 32.2 immunoglobulin (Ig) through flow cytometry. Monocyte-mediated cytotoxicity, with these sublines used as targets, was evaluated with the use of a 51Cr-release assay. It was found that monocytes could efficiently lyse the hybridoma cells (HC 32.2) bearing surface Ig directed to the high-affinity FcR. Consistent with the specificity of the 32.2 antibody for an epitope on the high-affinity receptor outside of the ligand binding site, human IgG did not block monocyte killing of HC 32.2. In contrast, monocytes could not mediate lysis of hybridoma cells bearing high levels of antibody directed to other monocyte cell surface molecules, in particular, class I MHC molecules, the C3bi receptor, and the My 23 antigen. The effect of IFN-gamma on the ability of monocytes to mediate lysis of the 32.2 Ig-bearing hybridomas was also assessed. Monocytes cultured in the absence of IFN-gamma could lyse the hybridoma line expressing high levels of 32.2 Ig as efficiently as monocytes cultured in the presence of IFN-gamma. However, untreated monocytes were less able than IFN-gamma-treated monocytes to kill HC 32.2 expressing lower levels of Ig. Thus, IFN-gamma may enhance the efficiency of monocyte-mediated antibody-dependent killing under conditions where limited antibody is available on the target. These studies demonstrate that the high-affinity FcR on monocytes can act as a cytotoxic trigger molecule for killing of tumor cell targets and that this trigger does not require specific binding to the Fc binding epitope. These results further encourage possible clinical application of the 32.2 monoclonal antibody in tumor therapy.  相似文献   

13.
Unstimulated human peripheral blood lymphocytes were depleted of K cells, which mediate antibody-dependent cellular cytotoxicity (ADCC) without removing NK cells, which mediate natural killing (NK). K cell depletion was achieved by buoyant centrifugation removal of lymphocytes that bound to glutaraldehyde-treated P815-AB cells at high lymphocyte-to-target ratios. Likewise, NK cells were removed with glutaraldehyde-treated K562 cells without removing K cells. Furthermore, both cytotoxic cell populations were observed directly in one agarose single-cell cytotoxic assay (ASCA) using P815-AB and K562 cells simultaneously as target cells. Moreover, the percentage of total cytotoxic cells was equal to the sum of the percentage of K and NK cells observed in separate ASCA. Collectively, these results indicate that K cells and NK cells are distinct subsets of FcR-bearing lymphocytes. One subset, K cells, has more avid Fc receptors (fcR) than NK cells and are 'activated' via thier FcR to kill antibody-coated target cells. The second subset, NK cells, have less avid FcR and are not 'activated' through their FcR to kill antibody-coated target cells.  相似文献   

14.
Proliferation and the cloning efficiency of T3+ but not T3- T cells are increased by the addition of lectins (phytohemagglutinin; PHA) to the culture medium. In contrast to that of T3+ cloned cell lines, the cytolytic activity of T3- clones is not enhanced by PHA, as we report here. We have investigated the effects of anti-T3 monoclonal antibody (MAb) and PHA on the proliferative capacity and cytolytic activity of various T3+ and T3- clones and cells to determine the possible involvement of the T3 receptor in these processes. We found that, in addition to inhibition of allospecific cytotoxicity, anti-T3 MAb can induce and/or enhance nonspecific cytolytic activity against particular target cells in cloned allospecific cytotoxic T cells (CTL) following preincubation of the effector cells with PHA or anti-T3. This enhancement of cytolytic activity is seen in T3+ but not T3- activated killer (AK) clones or fresh T3- natural killer (NK) cells and depends on the concentrations of anti-T3 MAb or PHA used. We conclude that the T3-Ti antigen-receptor complex is involved in the transmission of the activation signals by anti-T3 and PHA.  相似文献   

15.
In this paper, we characterize the antigen recognized by the monoclonal antibody B73.1 and the modification occurring at the membrane of the positive cells after interaction with the antibody. The B73.1-defined antigen is a protein of 50,000 to 72,000 daltons that is sensitive to pronase but not to trypsin treatment. B73.1 antibody, and its F(ab')2 fragment, directly block, at high concentrations, the binding of IgG antibody-sensitized erythrocytes to the Fc receptors (FcR) of a subpopulation of lymphocytes and neutrophils. B73.1 antibody dissociates rapidly from the positive cells, but concomitant modulation of both B73.1 antigen and FcR is induced when cells are incubated in the continuous presence of antibody or when B73.1 antibody is cross-linked at the cell membrane with an anti-mouse immunoglobulin antiserum. Reaction of lymphocytes with immune complexes also induces modulation of both FcR and B73.1 antigen, without affecting the expression of other antigens on the positive cells. The possibility that the antigen is internalized and digested by the cell after reaction with the antibody is discussed. B73.1 antibody inhibits antibody-dependent cytotoxicity mediated by lymphocytes (K cells) and neutrophils, whereas it does not affect spontaneous cytotoxicity of NK cells. These results suggest the B73.1-defined antigen might be the FcR or a structure closely related to it on K/NK cells.  相似文献   

16.
The valence for ligand of the 72 kD high-affinity IgG FcR present on human mononuclear phagocytes was evaluated. Lysates of U937 cells whose high-affinity FcR had been saturated with equivalent quantities of 125I-IgG1 kappa and unlabeled IgG1 lambda or with 125I-IgG1 lambda and unlabeled IgG1 kappa were incubated with Sepharose-anti-kappa. Eighty-nine percent of the applied 125I-IgG1 kappa was bound, whereas 0.35% of the applied 125I-IgG1 lambda bound (mean of two experiments), indicating that if the receptors are occupied with ligand, the receptors bind only one ligand molecule at a time. Two experiments were performed to show that the receptors were ligand-occupied. First, a monoclonal antibody directed against the 72 kD FcR (FcRmab32) was added to lysates of U937 cells saturated with equal quantities of 125I-IgG1 lambda and IgG1 kappa. This anti-FcR antibody caused a dose-dependent sevenfold increase in the amount of 125I-IgG1 lambda bound to the anti-kappa immunoadsorbent (presumably by cross-linking receptors bearing 125I-IgG1 lambda with receptors bearing IgG1 kappa), whereas monoclonal antibodies (MMA and IV3) directed against two other determinants on U937 caused no such increase. In the second experiment, Sepharose-FcRmab32 adsorbed 60% of the 125I-IgG1 kappa and 46% of the 125I-IgG1 lambda applied in a U937 lysate (bearing high-affinity FcR), whereas only 3% of 125I-IgG1 kappa and 6% of 125I-IgG1 lambda applied in a K562 lysate (bearing no high-affinity FcR) were adsorbed. We interpret these data to indicate that in detergent solution the valency of the high-affinity FcR on U937 cells is one.  相似文献   

17.
Activation of cloned human natural killer cells via Fc gamma RIII   总被引:5,自引:0,他引:5  
The Fc gamma RIII (CD16) Ag on human NK cells involved in antibody-dependent cellular cytotoxicity has been demonstrated to be an important activation structure. The present studies were carried out to further characterize the functional role of the CD16 Ag and the mechanisms whereby cytotoxicity is activated by using human NK clones. In phenotypic studies Fc gamma RIII was found to be expressed heterogeneously on various human cloned NK cells. Expression on CD3- and CD3+ clones varied with the donor and mAb used for detection. Functional data demonstrated that cytotoxicity against NK-resistant target cells can be induced in CD3-CD16+ NK clones and CD3+CD16+ clones with NK activity when various CD16 mAb were used. CD16 antibodies but not reactive isotype control antibodies induced cytotoxicity. In contrast to complete CD16 antibodies F(ab')2 fragments were not able to activate the cytotoxic mechanism. Both an antibody against FcR on the target cell (Fc gamma RII) and a CD11a antibody blocked induction of cytotoxicity. These results suggest that three steps are critical for activation of CD16+ cells via Fc gamma RIII: 1) specific binding of CD16 antibodies to Fc gamma RIII on effector cells irrespective of the epitope recognized; 2) cross-linking of effector cell CD16 Ag through binding of the Fc site of CD16 antibodies via corresponding FcR on the target cell membrane; and 3) interaction of CD11a/18 molecules with the target cell membrane.  相似文献   

18.
Within the first minute after incubation with the mouse anti-human T cell orthoclone monoclonal antibodies OKT3, OKT4, and OKT8, and in the absence of complement, human monocytes generate a burst of highly reactive oxygen metabolites as detected by a luminol-dependent photometric chemiluminescence (CL) assay. The kinetics of the CL responses to these antibodies are identical to that induced by OKM1, the monoclonal antibody to human monocytes and granulocytes. With regard to CL response intensities, OKM1 induces the maximal response and those of OKT3, OKT4, and OKT8 closely reflect the proportion of T cell subsets recognized by these antibodies in peripheral blood. This reaction is also observed when monoclonal antibodies against mouse Lyt surface determinants (Lyt-1 and Lyt-2) and Thy-1 antigen are tested against murine spleen cells. This murine model was further used to investigate the specificity and the mechanism of this reaction. It was demonstrated that the CL response is Lyt antigen specific, occurs upon addition of monoclonal IgG but not IgM antibodies, requires the concomitant presence of CL-producing cells (CLPC) (promonocytes, monocytes, macrophages, and/or granulocytes) and of fully differentiated T cells, and lastly, is mediated via a T cell opsonization process. Selective blockade of bone marrow cell Fc receptors (FcR II) with monoclonal anti-mouse FcR II antibody inhibits the CL response to IgG2b anti-T cell antibody-coated thymocytes and thus strongly suggests that the stimulation of CLPC oxidative metabolism in this model results from the binding of opsonized T cells to plasma membrane Fc receptors. These observations lend additional support to increasing evidence that the initiation of effector functions by monoclonal anti-T cell antibodies may be strictly dependent upon the presence of monocytes and/or macrophages.  相似文献   

19.
By using the OKM1 monoclonal antibody and the fluorescence-activated cell sorter to identify lymphocytes bearing iC3b (type 3) complement receptors, two principal populations of OKM1+ lymphocytes have been identified in human peripheral blood. One subset exhibited azurophilic granules and Fc receptors for IgG stained by Leu-11. The other population did not display FcR, but was enriched in cells reacting with OKT3 and OKT8 (low intensity). In healthy subjects, approximately 60% of CR3+ lymphocytes were granular FcR-bearing cells and only 18% co-expressed OKT3 determinants. In patients with systemic lupus erythematosus (SLE), CR3+ lymphocytes were predominantly FcR negative cells and 71% lacked granules. Only 33% reacted with Leu-11, but 50% co-expressed OKT3, 44% reacted with OKT8+, and 15% were OKT4+. We tested the hypothesis that agranular OKT3+ Leu-11- lymphocytes, such as those found in SLE patients, contained the precursors of natural killer (NK) cells. Leu-11+ cells were removed from normal lymphocytes by complement lysis, and the remaining cells were treated with recombinant IFN-alpha, IFN-gamma, or IL 2. These procedures were ineffective in generating typical NK effector cells. Our studies do not support the hypothesis that CR3+ Leu-11- lymphocytes are the precursors of granular Leu-11+ NK cells.  相似文献   

20.
Mycoplasma pulmonis infection augments natural killer cell activity in mice   总被引:5,自引:0,他引:5  
The goal of this study was to determine if experimental Mycoplasma pulmonis infection augmented splenic natural killer (NK) cell activity in mice. A 4 hour 51Cr-release in vitro assay using YAC-1 tumor target cells was employed to measure splenic NK cell activity in C57BL/6J mice infected intraperitoneally with M. pulmonis and in uninfected controls. Transient augmentation of the NK cells was observed, peaking at day 3 postinoculation (PI) and gradually returning to normal levels by day 10 PI. Selective depletion studies showed that the cells responsible for killing target cells were NK cells. They were nonadherent to nylon wool, not susceptible to Thy-1.2 antibody and susceptible to asialo GM1 ganglioside antibody. Inadvertent augmentation of the NK cell system due to M. pulmonis infection may complicate the interpretation of research data, especially in immunology and cancer studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号