首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Glutathione (GSH), γ-glutamylcysteine (γ-EC) and major free amino acids were measured in darkened and illuminated leaves from untransformed poplars (Populus tremula × P. alba) and poplars expressing Escherichia coli genes for γ-glutamylcysteine synthetase (γ-ECS; EC 3.2.3.3) and glutathione reductase (GR; EC 1.6.4.2). In poplars overexpressing γ-ECS, foliar γ-EC contents and GSH contents were markedly enhanced compared to poplars lacking the bacterial gene for the enzyme. However, the quantitative relationship between the foliar pools of γ-EC and GSH in these transformants was markedly dependent on light. In the dark, GSH content was relatively low and γ-EC content high, the latter being higher than the foliar GSH contents of untransformed poplars in all conditions. Hence, this transformation appears to elevate γ-EC from the ranks of a trace metabolite to one of major quantitative importance. On illumination, however, γ-EC content decreased fourfold whereas GSH content doubled. Glutathione was also higher in the light in untransformed poplars and in those overexpressing GR. In these plants, γ-EC was negligible in the light but increased in the dark. Cysteine content was little affected by light in any of the poplar types. No light-dependent changes in the extractable activities of γ-ECS, glutathione synthetase (EC 3.2.3.2) or GR were observed. In contrast, both the activation state and the maximum extractable activity of nitrate reductase (EC 1.6.6.1) were increased by illumination. In all poplar types, glutamate and aspartate were the major amino acids. The most marked light-induced increases in individual amino acids were observed in the glutamine, asparagine, serine and glycine pools. Illumination of leaves from poplars overexpressing γ-ECS at elevated CO2 or low O2 largely abolished the inverse light-dependent changes in γ-EC and GSH. Low O2 did not affect foliar contents of cysteine or glutamate but prevented the light-induced increase in the glycine pool. It is concluded that light-dependent glycine formation through the photorespiratory pathway is required to support maximal rates of GSH synthesis, particularly under conditions where the capacity for γ-EC synthesis is augmented. Received: 17 December 1996 / Accepted: 28 January 1997  相似文献   

2.
3.
Poplars overexpressing a bacterial Γ -glutamylcysteine synthetase ( Γ -ECS) in the cytosol (lines ggs11 and ggs28) had a 30-fold increase in foliar Γ -ECS activity relative to untransformed controls. Foliar Γ -glutamylcysteine ( Γ -EC) was increased by 10-fold while foliar glutathione accumulation increased by up to 3.5-fold in the leaves of the transformants. Untransformed and transformed poplars were grown with different soil concentrations of cadmium (0–1100 μg g−1 soil) for 2 weeks. Cadmium accumulated in the leaves of both transformed and untransformed poplars and growth was inhibited. Growth inhibition and foliar cadmium accumulation were greatest at the highest soil cadmium concentrations in all lines. Exposure to cadmium enhanced the foliar cysteine, Γ -EC and glutathione pools in all lines but less glutathione was present in the leaves of the untransformed controls than the transformants under all growth conditions. Cadmium-induced changes in the activities of malic enzyme, isocitrate dehydrogenase and guaiacol peroxidase were less pronounced in the leaves of the transformed poplars overexpressing Γ -ECS than in the untransformed controls. Glutamate dehydrogenase and glutathione reductase activities were unchanged by exposure to cadmium. We conclude that overexpression of Γ -ECS activity and foliar glutathione accumulation in transformed poplar allows greater tissue cadmium accumulation but has only a marginal effect on cadmium tolerance in poplar.  相似文献   

4.
Transformed poplars overexpressing -glutamylcysteine synthetase (-ECS) in the chloroplast (Lggs) were used to investigate chloroplastic biosynthesis of glutathione (GSH). In Lggs leaves, GSH contents were enhanced by up to 3.7 fold. In general, the highest GSH contents were observed in lines with highest -glutamylcysteine (-EC) contents. These lines had relatively low glycine. In darkness, foliar GSH decreased and -EC increased. Illumination of pre-darkened Lggs in air resulted in a 5-fold decrease in the -EC : GSH ratio. This light-induced decrease was largely abolished if leaves were illuminated at high CO2. Consequently, the -EC : GSH ratio of illuminated leaves was much higher at high CO2 than in air. At high CO2 total foliar amino acids were higher, but glycine and serine were lower, than in air. These results suggest that photorespiratory glycine is used in chloroplastic GSH synthesis. Despite this net CO2 fixation was similar in Lggs to untransformed poplars. Pre-illuminated leaf discs from Lggs, and poplars overexpression -ECS in the cytosol (ggs), were incubated in darkness with a range of metabolites. After 15 h, discs for both types of transformant incubated on water had accumulated high levels of -EC and showed marked increases in the -EC : GSH ratio. Feeding glycine, serine, glycollate or phosphoserine, attenuated the dark-induced changes in the -EC : GSH ratio, whereas 3-phosphoglycerate (PGA), phosphoenolpyruvate, glycerate, and hydroxypyruvate did not. Glycine produced from glycollate was therefore required for maximal GSH accumulation in both the chloroplastic and cytosolic compartment. Production of glycine from PGA failed to meet the demand of increased GSH synthetic capacity.  相似文献   

5.
Internode stem fragments of the poplar hybrid Populus tremula x Populus alba were transformed with a bacterial gene (gshl) for [gamma]-glutamylcysteine synthetase ([gamma]-ECS) targeted to the cytosol. Lines overexpressing [gamma]-ECS were identified by northern analysis, and the transformant with the highest enzyme activity was used to investigate the control of glutathione synthesis. Whereas foliar [gamma]-ECS activity was below the limit of detection in untransformed plants, activities of up to 8.7 nmol mg-1 protein min-1 were found in the transformant, in which the foliar contents of [gamma]-glutamylcysteine ([gamma]-EC) and glutathione were increased approximately 10- and 3-fold, respectively, without affecting either the reduction state of the glutathione pool or the foliar cysteine content. A supply of exogenous cysteine to leaf discs increased the glutathione content from both transformed and untransformed poplars, and caused the [gamma]-EC content of the transformant discs to increase still further. The following conclusions are drawn: (a) the native [gamma]-ECS of untransformed poplars exists in quantities that are limiting for foliar glutathione synthesis; (b) foliar glutathione synthesis in untransformed poplars is limited by cysteine availability; (c) in the transformant interactions between glutathione synthesis and cysteine synthesis operate to sustain the increased formation of [gamma]-EC and glutathione; and (d) the foliar glutathione content of the transformant is restricted by cysteine availability and by the activity of glutathione synthetase.  相似文献   

6.
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, γ-glutamate cysteine ligase (GSH1), responsible for synthesis of γ-glutamylcysteine (γ-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by γ-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of γ-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by γ-EC in vitro strongly suggests export of γ-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, γ-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.  相似文献   

7.
When illuminated leaf discs and detached leaves of spinach ( Spinacia oleracea L. cv. Estivato) were exposed to 0.4 and 0.25 μl 1-1 H2S, respectively, pool sizes of cysteine and glutathione increased. In the dark, apart from these compounds, the level of γ-glutamyl-cysteine also increased. Incubation of leaf discs with 1.0 m M buthionine sulfoximine (BSO) resulted in the accumulation of cysteine only, both in the light and in darkness. When glycine was supplied to the petioles of detached leaves exposed to H2S in the dark, the accumulation of glutathione was stimulated, while γ-glutamyl-cysteine accumulation was prevented completely. Glycolate and glyoxylate, precursors of glycine in the glycolate pathway, had nearly the same effect as glycine. Although other amino acids were apparently taken up equally well as glycine when supplied to the petiole, they were much less effective, or not effective at all, in restoring glutathione synthesis in the dark. These results provide evidence, that H2S-induced glutathione accumulation in spinach leaves in the dark is limited by the availability of glycine, giving rise to the accumulation of the metabolic precursor γ-glutamyl-cysteine.  相似文献   

8.
Poplars (Populus tremula × Populus alba) were transformed to overexpress Escherichia coli γ-glutamylcysteine synthetase (γ-ECS) or glutathione synthetase in the chloroplast. Five independent lines of each transformant strongly expressed the introduced gene and possessed markedly enhanced activity of the gene product. Glutathione (GSH) contents were unaffected by high chloroplastic glutathione synthetase activity. Enhanced chloroplastic γ-ECS activity markedly increased γ-glutamylcysteine and GSH levels. These effects are similar to those previously observed in poplars overexpressing these enzymes in the cytosol. Similar to cytosolic γ-ECS overexpression, chloroplastic overexpression did not deplete foliar cysteine or methionine pools and did not lead to morphological changes. Light was required for maximal accumulation of GSH in poplars overexpressing γ-ECS in the chloroplast. High chloroplastic, but not cytosolic, γ-ECS activities were accompanied by increases in amino acids synthesized in the chloroplast. We conclude that (a) GSH synthesis can occur in the chloroplast and the cytosol and may be up-regulated in both compartments by increased γ-ECS activity, (b) interactions between GSH synthesis and the pathways supplying the necessary substrates are similar in both compartments, and (c) chloroplastic up-regulation of GSH synthesis is associated with an activating effect on the synthesis of specific amino acids formed in the chloroplast.  相似文献   

9.
Abstract: The intracellular content of glutathione in astroglia-rich primary cultures derived from the brains of newborn rats was used as an indicator for the ability of these cells to use dipeptides for glutathione synthesis. For restoration of the glutathione level, after a 24-h starvation period in the absence of glucose and amino acids, glucose, glutamate, cysteine, and glycine have to be present in the incubation buffer. The dipeptides CysGly and γGluCys were able to substitute for cysteine plus glycine and glutamate plus cysteine, respectively. Half-maximal contents of glutathione were found at 20 µ M CysGly and 3 m M γGluCys. In addition, the oxidized forms of the dipeptides CysGly and GlyCys could replace cysteine plus glycine for glutathione restoration, and the glycine-containing dipeptides GlyGly, GlyLeu, GlyGlu, GlyGln, and γGluGly could partially substitute for the glycine necessary for the replenishment of glutathione. The glutathione resynthesis in the presence of CysGly plus glutamate was totally inhibited in the presence of buthionine sulfoximine, an inhibitor of γ-glutamylcysteine synthetase. In contrast, glutathione restoration from γGluCys at a concentration of 10 m M in the presence of glycine was not influenced by the inhibitor. The use of CysGly or γGluCys was not affected by the presence of the dipeptidase inhibitors cilastatin or bestatin. In addition, carnosine and several other dipeptides applied in a 50-fold excess only slightly prevented the use of CysGly, hinting at the existence in astroglial cells of a transport system specific for CysGly. The results demonstrate that astroglial cells can use dipeptides for intracellular glutathione synthesis and that the dipeptides most likely are taken up as intact molecules into astroglial cells before intracellular hydrolysis occurs.  相似文献   

10.
11.
Hormonal control of flower induction and inflorescence development in vitro was investigated in Spathiphyllum. The effects of gibberellic acid (GA3) and sucrose on inflorescence development were studied in plantlets regenerated in tissue culture. GA3 was mandatory for the shift from the vegetative to the reproductive stage. The effect of sucrose concentration on inflorescence bud development was studied in plantlets cultured in MS medium supplemented with 10 mg l−1 GA3. Sucrose concentration at 3 or 6% induced inflorescence development in, respectively, 83–85% of the plantlets. The effect of GA3 and sucrose on inflorescence differentiation and development were also recorded in liquid culture using air-lift bioreactor. The best response was found in the same medium which was standardized as an optimum for solid culture, but the results were better than solid culture. In order to study the relationship between glutathione (GSH) and flowering, we also measured the oxidized and reduced GSH content in leaves throughout the culture period on 2 weeks interval. The GSH accumulation was more after 4 weeks until 6 weeks in GA3 treated plantlets. Similarly, glutathione reductase which is involved in the recycling of reduced GSH providing a constant intracellular level of GSH, was also higher in GA3 treated plantlets. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase (γ-ECS) activity over the same period. The antioxidant enzyme activity in GA3 treated plantlets also suggests that the plants suffered increased oxidative stress during the period of GA3 treatment which subsequently increases GSH synthesis through activation of γ-ECS and this promotes flowering by increasing endogenous GSH.  相似文献   

12.
The poplar hybrid Populus tremula X P. alba was transformed with the Escherichia coli gene for glutathione synthetase ( gsh II ) targetted to the cytosol. Leaves of five lines of transgenic plants exhibited glutathione synthetase activities 15- to 60-fold higher than those of wild-type plants. Total glutathione levels and GSH/GSSG ratios were similar in transgenic and wild-type plants. Precursor feeding experiments with cysteine and γ-glutamylcysteine suggest that glutathione synthesis in the cytoplasm is controlled by a multistep procedure that includes (i) the availability of cysteine, (ii) the availability of γ-glutamylcysteine, and (iii) regulation of the activities of both γ-glutamylcysteine synthetase and glutathione synthetase. However step (ii) may set an upper limit for the cellular glutathione content.  相似文献   

13.
Abstract: Recently, phytoremediation of soils polluted with heavy metals has received a lot of attention. Since glutathione (GSH) and its derivatives (e.g., phytochelatins) play a major role in plant defence against environmental pollutants, we tested the effects of over-expression of bacterial genes for GSH synthesis in poplar on cadmium accumulation. A pilot experiment with CdCl2 in hydroponics revealed that poplars over-expressing γ-glutamylcysteine synthetase (γ-ECS) accumulated significantly more Cd in root tissue than wild type or glutathione synthetase over-expressing poplars. To test the partitioning of Cd in different organs, poplar lines over-expressing γ-ECS in the cytosol and in chloroplasts were treated with 0.2 mM CdCl2 in hydroponics. Significant amounts of Cd were translocated to leaves, but significant differences in Cd accumulation were not observed between transgenic and wild type plants. To evaluate these lines for large-scale phytoremediation of cadmium, plants were treated with 2 mM Cd in soil. Over a four-week period, the poplar plants were able to accumulate up to 5.3 mg Cd. Most remarkably, in young leaves of both transgenic lines, Cd was accumulated to concentrations 2.5 - 3 times higher than in the wild type. The increased allocation of cadmium to the young leaves represents a potentional advantage for the phytoremediation process using the same plants over several vegetation periods. The use of transgenic poplar lines with enhanced glutathione production capacity seems to be of particular advantage in highly polluted soils.  相似文献   

14.
Glutathione (GSH) and homoglutathione (hGSH) were quantified in Medicago truncatula during plant development. hGSH was detectable only 48 h after seed germination whereas GSH was present in the dry seeds, indicating that only GSH is used for sulphur storage in seeds. The hGSH was detectable only in the underground part of mature plants whereas GSH was present in all the organs. γ-EC synthetase (γ-ECS) and GSH synthetase (GSHS) activities were found in roots and leaves whereas hGSH synthetase (hGSHS) was found only in roots. Full-length cDNA encoding γ-ECS and two partial cDNAs ( gshs1 and gshs2 ) showing high identity with GSHS were isolated in M. truncatula . High γ-ECS activity was detected in protein extracts of a γ-ECS-deficient E. coli strain expressing the M. truncatula γ-ECS. Northern blot analysis showed that the γ-ECS gene was similarly expressed in all the mature plant organs tested, whereas gshs1 had a higher expression in leaves and flowers and gshs2 was preferentially expressed in roots and nodules. We hypothesise that gshs1 and gshs2 encode a GSHS and an hGSHS, respectively.  相似文献   

15.
Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) - the first enzyme of glutathione synthesis - causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells.  相似文献   

16.
Aims: To investigate the effects of pH stress coupled with cysteine addition on glutathione (GSH) production in the treatment of high cell density culture of Candida utilis. Methods and Results: We have previously observed that most Candida utilis cells remained viable after being subjected to pH at 1·2 for 3 h and that some intracellular GSH leaked into the medium. A cysteine addition strategy was applied in fed‐batch production of GSH. A single cysteine addition resulted in higher GSH yield than two separate additions without pH stress. An increase in intracellular GSH content triggered inhibition of γ‐glutamylcysteine synthetase (γ‐GCS). A strategy that combines cysteine addition with low‐pH stress was developed to relieve the inhibition of γ‐GCS. Conclusion: Without pH stress, single shot and double shot cysteine addition yielded a total GSH of 1423 and 1325 mg l?1. In comparison, a low‐pH stress counterpart resulted in a total GSH of 1542 and 1730 mg l?1, respectively. With low‐pH stress, we observed GSH secretion into the medium at 673 and 558 mg l?1 and an increase in the γ‐GCS activity by 1·2‐ and 1·5‐fold, respectively. The specific GSH production yield increased from 1·76% to 1·91% (w/w) for single shot, and 1·64% to 2·14% for double shots. Significance and Impact of the Study: Low‐pH shift was applied to alleviate the feedback inhibition of intracellular GSH on γ‐GCS activity by secreting GSH into the medium. This strategy is coupled with cysteine addition to enhance GSH production in Candida utilis.  相似文献   

17.
The effect of inhibitors of glutathione (GSH) synthesis, namely gamma-methyl glutamic acid, d-glutamic acid, cystamine, methionine-S-sulfoximine (MSX), buthionine-S-sulfoximine, and GSH itself, on the emission of H(2)S was investigated. All these compounds stimulated H(2)S emission from pumpkin (Cucurbita pepo L. cv Small Sugar Pumpkin) leaf discs in response to sulfate. MSX and GSH were the most effective compounds, stimulating H(2)S emission from leaf discs of mature pumpkin leaves by about 80% in response to sulfate. Both inhibitors did not appreciably enhance H(2)S emission in response to l-cysteine and inhibited H(2)S emission in response to sulfite.Treatment with MSX or GSH enhanced the uptake of sulfate by pumpkin leaf discs, but did not affect the incorporation of sulfate into reduced sulfur compounds. Inhibition of GSH synthesis by MSX or GSH caused an increase in the pool size of cysteine, and, simultaneously, reduced the incorporation of labeled sulfate into cysteine. The incorporation of labeled sulfate into the sulfite and sulfide pools of the cells are stimulated under these conditions.These observations are consistent with the idea that inhibition of GSH synthesis leads to an elevated cysteine pool that inhibits further cysteine synthesis. The H(2)S emitted under these conditions appears to arise from diversion of a precursor of the sulfur moiety of l-cysteine. Therefore, stimulation of H(2)S emission in response to sulfate upon inhibition of GSH synthesis may reflect a role of H(2)S emission in keeping the cysteine concentration below a critical level.  相似文献   

18.
Experiments in vitro have shown that γ-EC synthesis, the first step in GSH formation, is subject to feedback inhibition by physiological GSH concentrations. In order to evaluate the role of this feedback inhibition on γ-EC synthetase in vivo GSH synthesis was modulated in suspension cultures of P. crispum and N. tabacum by administration of cadmium. The alterations in the thiol contents were measured and in addition the effect of Cd exposure on γ-EC synthetase (E.C. 6.3.2.2) and GSH synthetase (E.C. 6.3.2.3) was studied. Decreasing cellular GSH concentrations by cadmium induced PC synthesis caused 7–10 fold increase in the rate of glutathione synthesis as measured by the accumulation of (γ-EC)nG. This increase was not linked to an increase in extractable activities of γ-EC- or GSH synthetase in parsley. In tobacco the activities of γ-EC- and GSH synthetase increased by a factor of 1.6 and 1.8, respectively, after 3 d of Cd exposure. In both species the exposure to Cd resulted in an increased cellular γ-EC content that reached a plateau within 24 h, and in a doubling of the cysteine content. In vitro experiments showed that GSH synthetase activity is inhibited by cadmium concentrations that have no effect on γ-EC synthetase activity. This may explain the accumulation of γ-EC in Cd exposed cells. Incubation with 0.25 mM cysteine did not effect the γ-EC- and GSH content in tobacco cells. In parsley the cellular GSH content increased threefold and the y-EC content twofold and stayed constant thereafter at the elevated levels. Taken together the results show that GSH synthesis in vivo is controlled by feedback inhibition as well as by the supply with cysteine. In the latter case the feedback inhibition may act as a kind of safety valve and prevent the accumulation of unphysiological GSH concentrations if the supply of cysteine is too large.  相似文献   

19.
Abstract: The sensitivity of hybrid poplar (Populus tremula × P. alba) to oxidative stress mediated by paraquat exposure was analysed with leaf discs from wild-type plants and plants expressing the bacterial cDNA of the enzymes of glutathione synthesis, namely gshI, encoding γ-glutamylcysteine synthetase (ECS), or gshII, encoding glutathione synthetase (GS), both in the cytosol. It was expected that leaf discs containing more than 2-fold elevated glutathione concentrations due to over-expression of ECS are less susceptible to paraquat exposure than wild-type plants and transformants over-expressing GS. However, neither over-expression of GS nor of ECS improved paraquat tolerance of the leaves. This result was surprising, because in wild-type plants reduced paraquat sensitivity of young compared with mature leaves coincided with ca. 30 % higher glutathione contents of the young leaves. Apparently, developmental changes in paraquat sensitivity of poplar leaves are controlled by factors different from glutathione contents. Feeding experiments with glutathione and its metabolic precursor γ-glutamylcysteine (EC) plus gly showed that glutathione can provide protection from paraquat-mediated photo-oxidative stress; but at least ca. 5-fold elevated glutathione levels are required for this effect in poplar leaves. Currently, such high glutathione levels have not been achieved by the application of plant molecular biology techniques. The significance of glutathione for the compensation of photo-oxidative stress is discussed.  相似文献   

20.
Reduced glutathione (GSH) is the most abundant low-molecular weight thiol in plant cells. It accumulates to high concentrations, particularly in stress situations. Because the pathway of GSH synthesis consists of only two enzymes, manipulation of cellular glutathione contents by genetic intervention has proved to be relatively straightforward. The discovery of a new bacterial bifunctional enzyme catalysing GSH synthesis but lacking feedback inhibition characteristics offers new prospects of enhancing GSH production and accumulation by plant cells, while the identification of γ-glutamyl cysteine and glutathione transporters provides additional possibilities for selective compartment-specific targeting. Such manipulations might also be used to affect plant biology in disparate ways, because GSH and glutathione disulphide (GSSG) have crucial roles in processes as diverse as the regulation of the cell cycle, systemic acquired resistance and xenobiotic detoxification. For example, depletion of the total glutathione pool can be used to manipulate the shoot : root ratio, because GSH is required specifically for the growth of the root meristem. Similarly, chloroplast γ-glutamyl cysteine synthetase overexpression could be used to increase the abundance of specific amino acids such as leucine, lysine and tyrosine that are synthesized in the chloroplasts. Here we review the aspects of glutathione biology related to synthesis, compartmentation and transport and related signalling functions that modulate plant growth and development and underpin any assessment of manipulation of GSH homeostasis from the viewpoint of nutritional genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号