首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme that rapidly catalyzes the hydrolysis of denatured DNA has been partially purified from germinated pea (Pisum sativum) seeds. The nuclease has been characterised as having endonucleolytic activity degrading single stranded DNA at a 15- to 20-fold higher rate than native DNA. From exclusion chromatography on Sephadex G-200 the molecular weight of the enzyme was calculated to be 42,000. The small extent of hydrolysis of native DNA is suggested to be due to the degradation of partially denatured areas in the native molecule. The enzyme shows activity over a broad range of pH but was most active between pH 6.5 and 8.0. The maximum hydrolysis of denatured DNA was observed at 45 °C while with native DNA the temperature optima was 60 °C. The nuclease does not show an absolute requirement for added divalent cations. However, the addition of Mg2+ and Ca2+ results in 40 and 60% stimulation, respectively. EDTA has no effect on enzymatic activity, whereas 8-hydroxyquinoline was inhibitory.  相似文献   

2.
Native and denatured calf thymus DNA, and homopolyribonucleotides were compared with respect to chromium and protein binding after an in vitro incubation with rat liver microsomes, NADPH, and chromium(VI) or chromium(III). A significant amount of chromium bound to DNA when chromium(VI) was incubated with the native or the denatured form of DNA in the presence of microsomes and NADPH. For both native and denatured DNA the amount of protein bound to DNA increased with the amount of chromium bound to DNA. Denatured DNA had much higher amounts of chromium and protein bound than native DNA. There was no interaction between chromium(VI) and either form of DNA in the absence of the complete microsomal reducing system. The binding of chrornium(III) to native or denatured DNA was small and relatively unaffected by the presence of microsomes and NADPH. The binding of chromium and protein to polyriboadenylic acid (poly(A)), polyribocytidylic acid (poly(C), polyri-boguanylic acid (poly(G)) and polyribouridylic acid (poly(U)) was determined after incubation with chromium(VI) in the presence of microsomes and NADPH. The magnitude of chromium and protein binding to the ribo-polymers was found to be poly(G) ? poly(A) ? poly(C) ? poly(U). These results suggest that the metabolism of chromium(VI) is necessary in order for chromium to interact significantly with nucleic acids. The metabolically-produced chromium preferentially binds to the base guanine and results in DNA-protein cross-links. These findings are discussed with respect to the proposed scheme for the carcinogenicity of chromium(VI). Keywords: DNA-protein cross-links — Chromium-guanine interaction-Microsomal reduction of chromate  相似文献   

3.
A Wolfe  G H Shimer  T Meehan 《Biochemistry》1987,26(20):6392-6396
We have investigated the physical binding of pyrene and benzo[a]pyrene derivatives to denatured DNA. These compounds exhibit a red shift in their absorbance spectra of 9 nm when bound to denatured calf thymus DNA, compared to a shift of 10 nm when binding occurs to native DNA. Fluorescence from the hydrocarbons is severely quenched when bound to both native and denatured DNA. Increasing sodium ion concentration decreases binding of neutral polycyclic aromatic hydrocarbons to native DNA and increases binding to denatured DNA. The direct relationship between binding to denatured DNA and salt concentration appears to be a general property of neutral polycyclic aromatic hydrocarbons. Absorption measurements at 260 nm were used to determine the duplex content of denatured DNA. When calculated on the basis of duplex binding sites, equilibrium constants for binding of 7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydro-benzo[a]pyrene to denatured DNA are an order of magnitude larger than for binding to native DNA. The effect of salt on the binding constant was used to calculate the sodium ion release per bound ligand, which was 0.36 for both native and denatured DNA. Increasing salt concentration increases the duplex content of denatured DNA, and it appears that physical binding of polycyclic aromatic hydrocarbons consists of intercalation into these sites.  相似文献   

4.
When closed circular duplex DNAs are exposed to alkali in the presence of ethidium bromide, from 0 to 100% of the DNA can be recovered as the fully base-paired duplex (native) form upon neutralization of the solutions. The fraction of native DNA depends on the concentration of ethidium bromide, time of incubation, ionic strength and temperature of the solutions before neutralization as well as the molecular weight and superhelix density of the DNA. Limiting ethidium concentrations exist below and above which 0 and 100% of the DNA, respectively, is recovered as native material under a given set of incubation conditions regardless of the length of time of incubation before neutralization. The strong molecular weight dependence of the fraction of DNA recovered in the native form after a given time of pre-neutralization incubation at ethidium concentrations between the limiting values noted above allows larger DNAs to remain fully denatured upon neutralization while smaller DNAs in the same mixture are fully renatured. This permits the rapid fractionation of mixtures of closed duplex DNAs on the basis of molecular weight when a technique for the separation of denatured from fully base-paired DNA is applied to such mixtures. Such a separation has been demonstrated through the marked enrichment of plasmid cloning vector DNA containing cloned inserts in the fractions that remain denatured after neutralization of alkaline solutions of these DNAs containing ethidium bromide.  相似文献   

5.
When increasing concentrations of methylmercuric hydroxide are added to a Cs2SO4 solution of native DNA, the buoyant density of DNA is unaltered until a critical concentration is reached above which there is a cooperative transition to denatured DNA which now binds so much CH3HgOH that it becomes very dense and nonbuoyant. As increasing concentrations of methylmercuric hydroxide are added to a Cs2So4 solution of denatured DNA, the buoyant density gradually increases, indicating a gradual increase in the amount of methylmercury cation bound. The denatured DNA methylmercury complex becomes nonbuoyant at the same concentration of methylmercuric hydroxide as does the native DNA. These results support our previous interpretation that CH3HgOH reacts with the imino NH bonds of thymine and guanine in nucleic acids. The reaction occurs more or less independently at the different binding sites for denatured DNA, but it occurs cooperatively with simultaneous denaturation for native DNA. The nature of the transition of denatured DNA to the nonbuoyant state is not known, but it is probably due to an abrupt decrease in the degree of hydration of the DNA when its density and hydrophobic character are sufficiently increased by the binding of the methylmercury cation. Direct measurements of the amount of methylmercury bound by DNA, as observed by preparative ultracentrifugation, confirm approximately the buoyant density results as to the amount of methylmercury bound. The possibility of using methylmercuric hydroxide as a reagent for the separation of complementary strands, depending on then thymine of their thymine plus guanine content, is discussed.  相似文献   

6.
The binding of pancreatic ribonuclease-A by denatured DNA, native DNA, poly-dA, and poly-dT, has been studied by a gel filtration method. With denatured DNA at pH 7.5, ionic strength 0.053M, there is one binding site per 12 nucleotides and the equilibrium binding constant per site is 9.7 × 104 l./mole. The binding constant increases by a factor of 8 as the pH is decreased from 8 to 7. The strength of the binding of denatured DNA increases with decreasing ionic strength. At pH 7.5, native DNA binds about ? as strongly as does denatured DNA. The binding affinity increases in the order poly-dA, denatured DNA, and poly-dT. These results support the view that the binding of denatured DNA involves both electrostatic interactions between the negatively charged polynucleotide and the positively charged protein, and an interaction of the protein with a pyrimidine residue of the denatured DNA, and thus that the binding is basically similar to that between RNAse and its substrate RNA.  相似文献   

7.
Osmium-induced alteration in DNA structure   总被引:2,自引:0,他引:2  
In the presence of pyridine and other ligands osmium tetroxide binds covalently to pyrimidine bases in DNA. Properties of osmium-modified native and denatured calf thymus DNA, and plasmid Co1E1 DNA were investigated by means of differential pulse polarography, absorption spectrophotometry, circular dichroism, agarose gel electrophoresis, and nuclease S1 digestion. A great difference in the reaction kinetics of native and denatured DNAs with osmium, pyridine was observed. On the ground of the slow stepwise reaction kinetics of native DNA in the initial stage of its modification by osmium it has been suggested that the primary reaction sites do not include bases contained in the intact double helix. Osmium binding to sporadic primary reaction sites (represented e.g. by bases in the vicinity of a single-strand break) in native calf thymus DNA resulted in local changes in DNA conformation limited to a close neighbourhood of the binding site. At higher osmium/nucleotide ratios disordering of the DNA structure over a region extending beyond the immediate binding site was observed. With denatured DNA the same type of structure disordering was detected already in the initial stage of the reaction at osmium/nucleotide ratios as low as 0.01. Osmium binding to the supercoiled Co1E1 DNA resulted in its relaxation without nicking and it increased its sensitivity to linearization by cleavage with nuclease S1. The behaviour of Co1E1 DNA has been explained by the formation of a denatured region in the molecule (accompanied by a coupled loss of duplex and superhelical turns). It has been suggested that osmium can be used to label and to visualize distorted regions in the DNA double helix.  相似文献   

8.
The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions.  相似文献   

9.
Competent cell-deoxyribonucleic acid (DNA) interactions were examined using tritium-labeled homologous or heterologous native or denatured DNAs and competent Streptococcus sanguis Wicky cells (strain WE4). The DNAs used were extracted from WE4 cells, Escherichia coli B cells, and E. coli bacteriophages T2, T4, T6, and T7. The reactions examined were: (i) total DNA binding, (ii) deoxyribonuclease-resistant DNA binding, and (iii) the production of acid-soluble products from the DNA. Optimal temperatures for the reactions were as follows: reaction (i), between 30 and 40 degrees C; reaction (ii), 30 degrees C; and reaction (iii), greater than 40 degrees C. The rates for the reactions (expressed as molecules of DNA that reacted per minute per colony-forming unit) did not vary greatly from one DNA source to another. With a constant competent cell concentration and differing DNA concentrations below a saturation level (from a given source), a different but constant fraction of the added DNA was cell bound, deoxyribonuclease resistant, and degraded to acid-soluble products. In experiments where the number of competent cells was varied and the DNA concentration was held constant, again essentially the same result was obtained. The extent of reactions (i), (ii), and (iii) depended upon the numbers as well as the source of DNA molecules applied to competent cells. Calcium ion essential for native DNA-cell reactions was also found essential for denatured DNA-cell reactions. Data obtained from competition experiments lead to the conclusion that competent WE4 cells contain specific sites for native as well as denatured DNAs.  相似文献   

10.
1. The purification of a nuclease from rat-liver mitochondria is described. The mitochondria are rendered soluble by treatment with Triton X-100 and, after fractionation with ammonium sulphate and acetone, the active fraction is further purified by chromatography on DEAE-cellulose and Sephadex G-75 to give a purification of over 700-fold. 2. The purified enzyme was only very slightly contaminated with deoxyribonuclease II, phosphodiesterase and phosphomonoesterase. The individual activities of these enzymes did not exceed 0.1% of the activity of the liver nuclease. 3. The purified enzyme attacked RNA more rapidly than denatured DNA and hydrolysed native DNA more slowly than denatured DNA. 4. There is some evidence to suggest that the nucleolytic activity of the purified preparation towards native DNA, denatured DNA and RNA is associated with a single protein. 5. The enzyme is relatively labile but is stabilized in the presence of 20% (w/v) glycerol or 10mm-2-mercaptoethanol.  相似文献   

11.
The formation of Cu2+ complexes with native and denatured DNA is studied by the methods of differential UV spectroscopy, CD spectroscopy, and viscometry. On ion binding to the bases of native DNA the latter transforms into a new conformation. This transition is accompanied with a sharp increase in UV absorption and a decrease in the intrinsic viscosity though the high degree of helicity persists. Possible sites of Cu2+ ion binding on DNA of various conformations are found along with corresponding constants of complex formation.  相似文献   

12.
Oxidative destruction of DNA by the adriamycin-iron complex   总被引:7,自引:0,他引:7  
H Eliot  L Gianni  C Myers 《Biochemistry》1984,23(5):928-936
The 2:1 adriamycin-Fe(III) complex is able to bind to DNA and to catalyze its oxidative destruction. The binding of the drug-metal complex to DNA is indicated by characteristic spectral changes which are different from those seen with adriamycin intercalation and by the propensity of the drug-metal complex to precipitate DNA. Furthermore, intercalated adriamycin appears not to be available for iron binding. The resulting ternary complex is quite stable: it is not disrupted by incubation in the presence of EDTA and can be isolated by using Sephadex G-50 column chromatography. Disruption of the ternary complex requires vigorous conditions (extraction with phenol at 60 degrees C). The adriamycin-iron complex in free solution has the capacity to catalyze the reduction of oxygen by thiols. The DNA-bound drug-metal complex preserves this capacity over a wide range of complex/DNA ratios. As a consequence of this thiol-dependent oxygen reduction, DNA is cleaved. This thiol-dependent DNA cleavage has been shown to require hydrogen peroxide as an intermediate product. These results have led us to propose that the thiol-dependent DNA cleavage reaction has two stages involving (1) reduction of oxygen leading to hydrogen peroxide and then (2) peroxide-dependent DNA cleavage. An unusual property of this reaction is that the cleavage is not random but gives rise to a defined 2300 base pair fragment.  相似文献   

13.
A cytoplasmic protein fraction from KB and Chinese hamster ovary cells (CHO-Kl) was shown to bind in vitro to cAMP and subsequently to DNA-cellulose. This protein complex was not found in DE-52 purified CHO-K1 cAMP-dependent protein kinases. The complex appeared to exist as a small fraction of the total cAMP binding proteins, preferred native to denatured DNA and exhibited multiple sedimentation coefficients in glycerol gradients. This complex, after elution from the DNA cellulose column, was shown to have bound specifically to [3H]-cAMP which could be displaced by non-radioactive cAMP in competitive binding assays.  相似文献   

14.
Binding of the complement regulatory protein, factor H, to C-reactive protein has been reported and implicated as the biological basis for association of the H402 polymorphic variant of factor H with macular degeneration. Published studies utilize solid-phase or fluid-phase binding assays to show that the factor H Y402 variant binds C-reactive protein more strongly than H402. Diminished binding of H402 variant to C-reactive protein in retinal drusen is posited to permit increased complement activation, driving inflammation and pathology. We used well validated native human C-reactive protein and pure factor H Y402H variants to test interactions. When factor H variants were incubated with C-reactive protein in the fluid phase at physiological concentrations, no association occurred. When C-reactive protein was immobilized on plastic, either non-specifically by adsorption in the presence of Ca(2+) to maintain its native fold and pentameric subunit assembly or by specific Ca(2+)-dependent binding to immobilized natural ligands, no specific binding of either factor H variant from the fluid phase was observed. In contrast, both factor H variants reproducibly bound to C-reactive protein immobilized in the absence of Ca(2+), conditions that destabilize the native fold and pentameric assembly. Both factor H variants strongly bound C-reactive protein that was denatured by heat treatment before immobilization, confirming interaction with denatured but not native C-reactive protein. We conclude that the reported binding of factor H to C-reactive protein results from denaturation of the C-reactive protein during immobilization. Differential binding to C-reactive protein, thus, does not explain association of the Y402H polymorphism with macular degeneration.  相似文献   

15.
An endonuclease acting on DNA exposed to ultraviolet light or gamma-rays has been extensively purified from calf thymus. The enzyme has a pH optimum at pH 7.0-7.5, acts with equal efficiency in the presence of EDTA or divalent cations (Mg-2+ or Ca-2+), is inhibited by NaCl and tRNA and is inactivated by incubation at 50 degrees C. Its molecular weight, determined by Sephadex chromatography or sodium dodecylsulfate gel electrophoresis, is approx. 30 000. The enzyme catalyzes the formation of breaks with 5'-phosphate termini in double-stranded DNA irradiated with ultraviolet or gamma-rays. It does not act on unirradiated DNA or denatured DNA. Since in all these properties the enzymatic activity on ultraviolet- and gamma-irradiated DNA behaved similarly and since the two activities cochromatographed in all systems used during purification, we conclude that they are associated with the same protein. The site of action of the enzyme in ultraviolet-irradiated DNA is a photoproduct other than pyrimidine dimers. Such a photoproduct can also be induced by irradiation of the DNA in vivo, i.e. within the cells.  相似文献   

16.
The response of populations of Bacillus subtilis to both native deoxyribonucleic acid (DNA) and denatured DNA was investigated at maximal competence and at various times during the development of compentency. The results indicate that competence for transformation with native and denatured DNA increases and decreases simultaneously. Competition occurs between native and single-stranded DNA during transformation, and the same cells in a population can be doubly transformed by DNA molecules of both configurations.  相似文献   

17.
T-5-induced DNA polymerase has been shown to possess a 3' leads to 5'-exonucleolytic activity. The exonuclease acts on both native and denatured DNA, but the apparent rate of degradation of denatured DNA is about five times faster than that for native DNA. The enzyme appears to act only on 3'-OH ends and produces mainly 5'-dNMP's. Like polymerase activity, exonuclease activity shows a pH optimum around 8.6. Mg2+, dithiothreitol, and N-ethylmaleimide had identical effects on both the activities. Nicked DNA was almost totally protected from exonuclease action under synthetic conditions, i.e., in the presence of 4dNTP's. Denatured DNA was partly degraded in the early phase of incubation with 4dNTP's, presumably due to unhybridized tails at the 3'-OH primer ends. However, the exonuclease activity was operative in both cases under synthetic conditions, as evidenced by template-dependent conversion of [3H]dTTP to [3H]dTMP.  相似文献   

18.
Proflavine formed a complex with transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae, with optimal formation at a ratio of proflavine to DNA of 0.06. The rate of dissociation of the complex by dialysis increased in the order: native, denatured, renatured DNA. The transforming activity of the DNA was reduced by its interaction with proflavine. This inactivation was dependent on the physical state of the DNA, the proflavine concentration, and the temperature. DNA that had been denatured and renatured was most sensitive; native DNA was much less sensitive. The inactivation remained after dialysis and was stable to prolonged storage. It is concluded that the inactivation of transforming DNA by proflavine takes place by a mechanism different from that of DNA-proflavine complex formation.  相似文献   

19.
The binding properties of protein uH2A and histone H2A to DNA were investigated by filter binding assays. Both proteins revealed similar affinity for native and denatured DNA. Competition with increasing amounts of repetitive and nonrepetitive DNA has shown that protein uH2A binds selectively to nonrepetitive sequences. When poly d(A-T) was used as a competitor, uH2A bound to this polynucleotide with much greater affinity than histone H2A. These findings suggest a selective binding to regulatory A-T rich intergenic sequences in native DNA.  相似文献   

20.
The interaction of contractile proteins (myosin, actin, tropomyosin and troponin) with DNA was studied in vitro using a nitrocellulose filter binding technique. The data indicate a high affinity of myosin and troponin for DNA, a lesser interaction between DNA and tropomyosin and the absence of binding of actin to DNA. When binding to DNA was detected, the interaction was higher with single-stranded DNA than with RNA or double-stranded DNA, although in some conditions myosin binds equally as well to native as to denatured eukaryotic DNA. Myosin binds better to eukaryotic than to phage native DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号