首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The FHIT (fragile histidine triad) gene located at chromosome 3p14.2 has been proposed as a candidate tumor suppressor gene in human cancers. Fhit protein with the diadenosine 5',5'-P1,P3-triphosphate (Ap3A) hydrolase activity is the protein product of FHIT gene. The way in which Fhit exerts its tumor suppressor activity and the relationship of the Ap3A hydrolase activity to tumor suppression are not known. As a step toward understanding of the Fhit function in the cell we have explored its intracellular localization and distribution in the rat tissues. Data obtained from immunoblot analysis showed that Fhit protein was most abundant in spleen and brain. Moderate amount of Fhit was detected in kidney and liver, whereas the level of Fhit protein in heart, skeletal muscle and kidney glomeruli was undetectable. RT-PCR performed on RNA isolated from these tissues showed no product, whereas the level of Fhit mRNA in spleen, brain, kidney, liver and lung correlated with the Fhit protein level. The immunoblot analysis performed on subcellular fractions of various rat tissues obtained by differential and density-gradient centrifugation showed that Fhit protein was localized exclusively in nucleus and at the plasma membrane. Presented data showing nuclear and plasma membrane localization of Fhit may support the hypothesis concerning Fhit as a signaling molecule.  相似文献   

2.
3.
4.
5.
章倩倩  周惠  屈良鹄  王丽京 《生物磁学》2013,(24):4627-4629,4633
目的:探讨胶质瘤细胞中p27酬蛋白的表达、定位,为进一步研究p27kip1在胶质瘤发生、发展过程中的功能奠定理论基础。方法:用免疫荧光方法检测U87、LN308细胞p27kiP1蛋白的定位情况;进一步分离两种细胞的细胞质与细胞核,在显微镜下观察细胞核形态并用DAPI染色分析细胞核完整性,提取蛋白用Westernblotting。方法检测分离的细胞质与细胞核蛋白的纯度,并检测p27kip1,在细胞中的表达情况。结果:成功分离了细胞的细胞浆与细胞核,并得到纯度较好的细胞浆蛋白与细胞核蛋白。确定了p27kip1蛋白主要表达于U87和LN308细胞的细胞质中。结论:p27kip1蛋白在恶性胶质瘤中可能主要表达在细胞质中,并且其亚细胞定位可能与胶质瘤的恶性程度相关。  相似文献   

6.
Neurofibromin is actively transported to the nucleus   总被引:2,自引:0,他引:2  
Mutations in the neurofibromatosis type 1 (NF1) tumor suppressor gene predispose individuals to a variety of benign and malignant tumors. Many tumor suppressors ‘shuttle’ between the nucleus and the cytoplasm, thus regulating their function. By expressing different NF1 constructs in COS-7 cells (encompassing exons 28–49 and fused to the green fluorescent protein), we identified a functional nuclear localization signal (NLS) in exon 43. Mutation of the NLS completely abolishes the nuclear entry of the NF1-derivative fusion protein. A highly expressed splice variant that lacks this NLS controls the localization and hence the function of neurofibromin. The localization of neurofibromin in the nucleus may provide novel clues to unknown functions for NF1.  相似文献   

7.
In the brain, angiotensinogen (AGT) is primarily expressed in astrocytes; brain ANG II derived from locally produced AGT has been shown to influence blood pressure. To better understand the molecular basis of AGT expression in the brain, we identified a human astrocytoma cell line, CCF-STTG1, that expresses endogenous AGT mRNA and produces AGT protein. Studies examining CCF-STTG1 cell AGT after N- and O-glycosidase suggest that AGT may not be posttranslationally modified by glycosylation in these cells as it is in plasma. Small amounts of AGT (5% of HepG2) were detected in the culture medium, suggesting a low rate of AGT secretion. Immunocytochemical examination of AGT in CCF-STTG1 cells revealed mainly nuclear localization. Although this has not been previously reported, it is consistent with nuclear localization of other serpin family members. To examine this further, we generated a fusion protein consisting of green fluorescent protein (GFP) and human AGT and examined subcellular localization by confocal microscopy after confirming expression of the fusion protein by Western blot. In CCF-STTG1 cells, a control GFP construct lacking AGT was mainly localized in the cytoplasm, whereas the GFP-AGT fusion protein was primarily localized in the nucleus. To map the location of a potential nuclear localization signal, overlapping 500-bp fragments of human AGT cDNA were fused in frame downstream of GFP. Although four of the fusion proteins exhibited either perinuclear or cytoplasmic localization, one fusion protein encoding the COOH terminus of AGT was localized in the nucleus. Importantly, nuclear localization of human AGT was confirmed in primary cultures of glial cells isolated from transgenic mice expressing the human AGT under the control of its own endogenous promoter. Our results suggest that AGT may have a novel intracellular role in the brain apart from its predicted endocrine function.  相似文献   

8.
In this study, we aimed to investigate the aberrant expression and shift in localization of prohibitin (PHB) during apoptosis of human cholangiocarcinoma cells. Our study demonstrated that PHB was expressed primarily in the cytoplasm and only a little in the nucleus. However, PHB expression significantly decreased, and its localization shifted from the cytoplasm to the nucleus during apoptosis. PHB co-localized with AIF, Rb, p53, and c-Fos, but the region of co-localization was altered after treatment. Meanwhile, we detected a direct interaction between PHB and both p53 and Rb in Mz-ChA-1 cells. These results suggest that the altered localization and expression of PHB, as well as its co-localization with related oncogenes and tumor suppressor genes, can affect the apoptosis of Mz-ChA-1 cells.  相似文献   

9.
The tumor suppressor gene PTEN is a phosphoinositide phosphatase that is inactivated by deletion and/or mutation in diverse human tumors. Wild-type PTEN is expressed both in the cytoplasm and nucleus in normal cells, with a preferential nuclear localization in differentiated or resting cells. To elucidate the relationship between PTEN's subcellular localization and its biologic activities, we constructed different PTEN mutants that targeted PTEN protein into different subcellular compartments. Our data show that the subcellular localization patterns of a PTEN (deltaPDZB) mutant versus a G129R phosphatase mutant were indistinguishable from those of wild-type PTEN. In contrast, the Myr-PTEN mutant demonstrated an enhanced association with the cell membrane. We found that nuclear PTEN alone is capable of suppressing anchorage-independent growth and facilitating G1 arrest in U251MG cells without inhibiting Akt activity. Nuclear compartment-specific PTEN-induced growth suppression is dependent on possessing a functional lipid phosphatase domain. In addition, the down-regulation of p70S6K could be mediated, at least in part, through activation of AMP-activated protein kinase in an Akt-independent fashion. Introduction of a constitutively active mutant of Akt, Akt-DD, only partially rescues nuclear PTEN-mediated growth suppression. Our collective results provide the first direct evidence that PTEN can contribute to G1 growth arrest through an Akt-independent signaling pathway.  相似文献   

10.
To address the recent controversy about the subcellular localization of CTP:phosphocholine cytidylyltransferase alpha (CTalpha), this study was designed to visualize green fluorescent protein (GFP). CTalpha fusion proteins directly and continuously under different conditions of cell cycling and in various cell lines. The GFP. CTalpha fusion proteins were enzymatically active and capable of rescuing mutant cells with a temperature-sensitive CT. The expressed GFP.CTalpha fusion protein was localized to the nucleus in all cell lines and required the N-terminal nuclear targeting sequence. Serum depletion/replenishment did not cause shuttling of CTalpha between the nucleus and cytoplasm. Moreover, the subcellular localization of CTalpha was examined continuously through all stages of the cell cycle in synchronized cells. No shuttling of CTalpha between the nucleus and cytoplasm was observed at any stage of the cell cycle. Stimulation of cells with oleate had no effect on the localization of CTalpha. The GFP.CTalpha lacking the nuclear targeting sequence stayed exclusively in the cytoplasm. Regardless of their localization, the GFP.CTalpha fusion proteins were equally active for phosphatidylcholine synthesis and mutant rescue. We conclude that the nuclear localization of CTalpha is a biological event independent of cell cycle in most mammalian cells and is unrelated to activation of phosphatidylcholine synthesis.  相似文献   

11.
Survivin is a member of the inhibitor of apoptosis (IAP) family of negative regulators of programmed cell death that is frequently overexpressed in human tumors. Survivin is not only involved in the regulation of apoptosis, but is also known to play a role in the control of cell cycle progression at the G2/M phase. Survivin is a predominantly cytoplasmic protein expressed in a cell cycle-dependent manner, but the mechanism(s) that determine its nuclear-cytoplasmic localization have not been described. In this study, we report that Survivin is a nuclear shuttling protein that is actively exported from the nucleus via the CRM1-dependent pathway. Nuclear export of Survivin is independent of the export of other shuttling proteins that control the G2/M phase transition, such as cyclin B1 and cdc25. The carboxy-terminal domain of Survivin is both necessary and sufficient for its nuclear export, although this region does not contain a functional leucine-rich nuclear export signal. Differences in the amino acid sequence of this region determine the dramatically different localization of Survivin (in the cytoplasm) and its splicing variant Survivin-DeltaEx3 (in the nucleus). The carboxy-terminal end of Survivin-DeltaEx3 contains a bipartite nuclear localization signal, not present in Survivin, which mediates its strong nuclear accumulation. These data suggest that active transport between the nucleus and cytoplasm may constitute an important regulatory mechanism for Survivin function.  相似文献   

12.
Many RNA viruses, which replicate predominantly in the cytoplasm, have nuclear components that contribute to their life cycle or pathogenesis. We investigated the intracellular localization of the multifunctional nonstructural protein 2 (nsP2) in mammalian cells infected with Venezuelan equine encephalitis virus (VEE), an important, naturally emerging zoonotic alphavirus. VEE nsP2 localizes to both the cytoplasm and the nucleus of mammalian cells in the context of infection and also when expressed alone. Through the analysis of a series of enhanced green fluorescent protein fusions, a segment of nsP2 that completely localizes to the nucleus of mammalian cells was identified. Within this region, mutation of the putative nuclear localization signal (NLS) PGKMV diminished, but did not obliterate, the ability of the protein to localize to the nucleus, suggesting that this sequence contributes to the nuclear localization of VEE nsP2. Furthermore, VEE nsP2 specifically interacted with the nuclear import protein karyopherin-alpha1 but not with karyopherin-alpha2, -3, or -4, suggesting that karyopherin-alpha1 transports nsP2 to the nucleus during infection. Additionally, a novel nuclear export signal (NES) was identified, which included residues L526 and L528 of VEE nsP2. Leptomycin B treatment resulted in nuclear accumulation of nsP2, demonstrating that nuclear export of nsP2 is mediated via the CRM1 nuclear export pathway. Disruption of either the NLS or the NES in nsP2 compromised essential viral functions. Taken together, these results establish the bidirectional transport of nsP2 across the nuclear membrane, suggesting that a critical function of nsP2 during infection involves its shuttling between the cytoplasm and the nucleus.  相似文献   

13.
采用生物信息学方法对人CDC73 (cell division cycle 73)基因编码蛋白的理化性质、亲疏水性、跨膜区域、信号肽区域、二级结构、三级结构、蛋白质之间的相互作用、亚细胞定位进行预测分析。使用多种分析软件对人CDC73基因编码蛋白进行预测分析。研究可知,人CDC73基因属于抑癌基因,该基因编码一个由531个氨基酸组成的肿瘤抑制因子Parafibromin,其等电点为9.63,半衰期为30 h且在哺乳动物中高度保守;二级结构预测发现13个α螺旋和10个β折叠片层,三级结构预测结果的可靠性达69.01%,亚细胞定位主要分布于细胞质及细胞核。由本研究可知,人CDC73基因编码蛋白是一个存在核定位序列的不稳定亲水蛋白,在细胞内广泛分布并参与多种生命活动过程,且能够抑制肿瘤的产生。对人CDC73基因编码蛋白结构和功能的预测分析,可为其进一步的研究提供一定的理论依据,也为相关疾病的诊治提供新的思路。  相似文献   

14.
Intracellular localization map of human herpesvirus 8 proteins   总被引:1,自引:0,他引:1  
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases.  相似文献   

15.
Our previous reports have demonstrated frequent and strong expression of glycogen phosphorylase (EC 2.4.1.1) activity mainly in the cytoplasm of gastric carcinoma. Although previous studies have suggested the phosphorylase glyco-syltransferase system to be in the nucleus from enzyme histochemical analyses, intranuclear localization of the phosphorylase has not been fully established. The aims of the present study are to investigate the nuclear localization of glycogen phosphorylase and to identify the isoform of phosphorylase in the nucleus of gastrointestinal carcinoma. The activity of glycogen phosphorylase in carcinoma cells corresponding to the nucleus was demonstrated using enzyme cytochemical analysis. The phosphorylase activity coincided with localization revealed by immunocytochemistry using affinity-purified specific anti-human brain-type glycogen phosphorylase antibody. The isoform expressed in the nuclei of carcinoma cells was identified as bei ng only the brain type according to a polymerase chain reaction-based assay using RNA obtained from gastric carcinoma cells and primers specific to muscle, liver and brain types of glycogen phosphorylase. The intranuclear localization of the brain-type isoform was confirmed by immunoelectron microscopical analyses. Further investigation to examine the nuclear localization in human carcinoma tissue (145 and 25 specimens with gastric and colonic carcinoma respectively) was carried out by immunohistochemistry using specific anti-brain-type antibody. Nuclear immunostaining was observed in seven cases out of 145 gastric carcinoma. The present study is the first to clarify the nuclear localization of glycogen phosphorylase with enzymatic activity in gastrointestinal carcinoma. The isoform of the enzyme expressed in the carcinoma was identified as the brain type. These results warrant further studies on the mechanisms for transporting the large molecule of brain-type glycogen phosphorylase to nuclei and its function in the nucleus of carcinoma cells.  相似文献   

16.
17.
18.
hGTSE-1 (human G(2) and S phase-expressed-1) is a cell cycle-regulated protein mainly localized in the cytoplasm and apparently associated with the microtubules. hGTSE-1 is able to down-regulate levels and activity of the p53 tumor suppressor protein: it binds the C-terminal region of p53 and represses its ability to induce apoptosis after DNA damage. Here we report that, after DNA damage, hGTSE-1 becomes stabilized in a p53-independent way and accumulated in the nucleus. Further characterization of hGTSE-1 localization revealed increased nuclear staining in unstressed cells after treatment with the nuclear export inhibitor leptomycin B, or when a nuclear export signal (NES) located in its C-terminal region was mutated. Finally, we provide evidence that hGTSE-1 ectopic expression, in addition to p53 protein levels down-regulation, is able to enhance cytoplasmic localization of p53. Interestingly, NES-mutated hGTSE-1 accumulates in the nucleus, binds p53 but looses its ability to enhance cytoplasmic redistribution of p53 and to regulate p53 protein levels. Similarly, when wild type hGTSE-1 functions on p53 were analyzed in cells lacking Mdm2, it failed in regulating both p53 localization and protein levels, thus indicating that hGTSE-1 requires an intact NES and functional Mdm2 for the regulation of p53. Our results provide new insights into the mechanism of hGTSE-1 function, whereby its characterized nucleo-cytoplasmic shuttling ability is required to regulate p53.  相似文献   

19.
20.
The targeting of the tumor suppressor PTEN protein to distinct subcellular compartments is a major regulatory mechanism of PTEN function, by controlling its access to substrates and effector proteins. Here, we investigated the molecular basis and functional consequences of PTEN nuclear/cytoplasmic distribution. PTEN accumulated in the nucleus of cells treated with apoptotic stimuli. Nuclear accumulation of PTEN was enhanced by mutations targeting motifs in distinct PTEN domains, and it was dependent on an N-terminal nuclear localization domain. Coexpression of a dominant negative Ran GTPase protein blocked PTEN accumulation in the nucleus, which was also affected by coexpression of importin alpha proteins. The lipid- and protein-phosphatase activity of PTEN differentially modulated PTEN nuclear accumulation. Furthermore, catalytically active nuclear PTEN enhanced cell apoptotic responses. Our findings indicate that multiple nuclear exclusion motifs and a nuclear localization domain control PTEN nuclear localization by a Ran-dependent mechanism and suggest a proapoptotic role for PTEN in the cell nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号