首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although taste can influence meal size and body weight, the neural substrate for these effects remains obscure. Dopamine, particularly in the nucleus accumbens, has been implicated in both natural and nonnatural rewards. To isolate the orosensory effects of taste from possible postingestive consequences, we investigated the quantitative relationship between sham feeding of sucrose and extracellular dopamine in the nucleus accumbens with microdialysis in rats. Sucrose intake linearly increased as a function of concentration (0.03 M, 18.07 +/- 2.41 ml; 0.1 M, 30.92 +/- 2.60 ml; 0.3 M, 43.28 +/- 2.88 ml). Sham feeding also stimulated accumbens dopamine overflow as a function of sucrose solution concentration (0.03 M, 120.76 +/- 2.6%; 0.1 M, 140.28 +/- 7.8%; 0.3 M, 146.27 +/- 5.05%). A second experiment used the same protocol but clamped the amount of sucrose ingested and revealed a similar, concentration-dependent dopamine activation in the nucleus accumbens. This is the first demonstration of a quantitative relationship between the concentration-dependent rewarding effect of orosensory stimulation by sucrose during eating and the overflow of dopamine in the nucleus accumbens. This finding provides new and strong support for accumbens dopamine in the rewarding effect of sucrose.  相似文献   

2.
Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons.  相似文献   

3.
4.
Abstract: Norepinephrine (NE) was microinjected into the paraventricular nucleus (PVN), while microdialysis was used to monitor extracellular dopamine (DA) and acetylcholine (ACh) in the nucleus accumbens (NAc). The PVN is a site where exogenously administered NE can act through α2 receptors to elicit eating behavior and preference for carbohydrates. It was hypothesized that NE in the PVN acts on a behavior reinforcement system by altering the DA/ACh balance in the NAc. NE microinjections (80 nmol in 0.3 µl), which effectively elicited feeding in satiated rats in a separate test, caused a significant increase in extracellular DA (109%) and decrease in ACh (−27%) when the same animals were tested in the absence of food. In contrast when the food was available and ingested, ACh increased (51%) instead of decreasing. These results support the hypothesis that a functional link exists between the PVN and the NAc in which DA helps initiate and ACh helps stop appetitive behavior involved in the reinforcement of eating.  相似文献   

5.
The present study investigated the role of alpha2A-adrenoceptor (alpha2A-AR) subtype in the regulation of noradrenaline (NA) and dopamine (DA) release in the nucleus accumbens (NAc). The effect of locally infused and systemically injected alpha2-AR agonist, dexmedetomidine (DMT), and alpha2-AR antagonist, atipamezole, on NA and DA release was investigated in alpha2A-AR knockout and control mice by using in vivo microdialysis. In addition, we compared the drug effects on DA and NA release in the NAc to their effect on locomotor activity. Baseline NA and DA concentrations did not differ between genotypes. Local infusion of DMT decreased, in a concentration-dependent manner, NA, but not DA, levels in the control mice. However, systemic injection of DMT decreased both NA and DA levels in the control mice. In both cases DMT had no effects on transmitter release in alpha2A-AR knockout mice. Our results suggest that alpha2-ARs regulate the release of NA, but not DA, at the terminal level in the NAc. However, alpha2-ARs regulate DA release in the NAc indirectly by their effect on DA neurones in the ventral tegmental area via an unknown mechanism. In both cases the regulation is mediated by alpha2A-adrenoceptor subtype. Also the modulation of locomotor activity by alpha2-AR agonist and antagonist seems to be mediated via alpha2A-adrenoceptors.  相似文献   

6.
Amphetamine is known to increase dopamine (DA) release by acting directly on dopamine transporters (DAT), primarily through a mechanism that is independent of impulse flow. We present evidence to show that impulse-dependent increase in DA outflow in the nucleus accumbens (NAc) is produced by amphetamine depending on genetic background. Systemic amphetamine produced higher accumbal DA release in the widely exploited C57BL/6J background than in the DBA/2J. By contrast, intra-accumbens perfusion using increasing doses of amphetamine dramatically increased DA outflow in the DBA/2J background, whereas very low DA outflow was evident in C57BL/6J mice. The fast sodium channel blocker tetrodotoxin infused through the microdialysis probe abolished accumbal DA release induced by systemic amphetamine only in the C57BL/6J background. Finally, medial prefrontal excitotoxic lesion abolished amphetamine-induced mesoaccumbens DA release in C57BL/6J mice, without significantly affecting it in the DBA/2J background. These results represent the first functional evidence in an in vivo study that amphetamine can increase DA release in the NAc mainly through an impulse-dependent mechanism regulated by prefronto-cortical glutamatergic transmission. Moreover, they point to a genetic control of impulse-dependent DA release in the accumbens, providing an exploitable tool to investigate aetiological factors involved in psychopathology and drug addiction.  相似文献   

7.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

8.
For humans and rodents, ingesting sucrose is rewarding. This experiment tested the prediction that the neural activity produced by sapid sucrose reaches reward systems via projections from the pons through the limbic system. Gastric cannulas drained ingested fluid before absorption. For 10 days, the rats alternated an hour of this sham ingestion between sucrose and water. On the final test day, half of them sham drank water and the other half 0.6 M sucrose. Thirty minutes later, the rats were killed and their brains immunohistochemically stained for Fos. The groups consisted of controls and rats with excitotoxic lesions in the gustatory thalamus (TTA), the medial (gustatory) parabrachial nucleus (PBN), or the lateral (visceral afferent) parabrachial nucleus. In controls, compared with water, sham ingesting sucrose produced significantly more Fos-positive neurons in the nucleus of the solitary tract, PBN, TTA, and gustatory cortex (GC). In the ventral forebrain, sucrose sham licking increased Fos in the bed nucleus of the stria terminalis, central nucleus of amygdala, and the shell of nucleus accumbens. Thalamic lesions blocked the sucrose effect in GC but not in the ventral forebrain. After lateral PBN lesions, the Fos distributions produced by distilled H(2)O or sucrose intake did not differ from controls. Bilateral medial PBN damage, however, eliminated the sucrose-induced Fos increase not only in the TTA and GC but also in the ventral forebrain. Thus ventral forebrain areas associated with affective responses appear to be activated directly by PBN gustatory neurons rather than via the thalamocortical taste system.  相似文献   

9.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

10.
The present study compared two different in vivo microdialysis methods which estimate the extracellular concentration of analytes at a steady state where there is no effect of probe sampling efficiency. Each method was used to estimate the basal extracellular concentration of dopamine (DA) in the nucleus accumbens of the rat. In the first method, DA is added to the perfusate at concentrations above and below the expected extracellular concentration (0, 2.5, 5, and 10 nM) and DA is measured in the dialysate from the brain to generate a series of points which are interpolated to determine the concentration of no net flux. Using this method, basal DA was estimated to be 4.2 +/- 0.2 nM (mean +/- SEM, n = 5). The slope of the regression gives the in vivo recovery of DA, which was 65 +/- 5%. This method was also used to estimate a basal extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) concentration in the nucleus accumbens of 5.7 +/- 0.6 microM, with an in vivo recovery of 52 +/- 11% (n = 5). A further experiment which extended the perfusate concentration range showed that the in vivo recovery of DA is significantly higher than the in vivo recovery of DOPAC (p less than 0.001), whereas the in vitro recoveries of DA and DOPAA are not significantly different from each other. The in vivo difference is thought to be caused by active processes associated with the DA nerve terminal, principally release and uptake of DA, which may alter the concentration gradient in the tissue surrounding the probe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In this study, we investigate the effects of chronic administration of (−)nicotine on the function of the NMDA-mediated modulation of [3H]dopamine (DA) release in rat prefrontal cortex (PFC) and nucleus accumbens (NAc). In the PFC synaptosomes NMDA in a concentration-dependent manner evoked [3H]DA release in rats chronically treated with vehicle (14 days) with an EC50 of 13.1 ± 2.0 μM. The NMDA-evoked overflow of the [3H]DA in PFC nerve endings of rats treated with (−)nicotine was significantly lower (−43%) than in vehicle treated rats. The EC50 was 9.0 ± 1.4 μM. Exposure of NAc synaptosomes of rats treated with vehicle to NMDA produced an increase in [3H]DA overflow with an EC50 of 14.5 ± 5.5 μM. This effect was significantly enhanced in chronically treated animals. The EC50 was 10.5 ± 0.5 μM. The K+-evoked release of [3H]DA was not modified by the (−)nicotine administration. Both the changes of the NMDA-evoked [3H]DA overflow in the NAc and PFC disappeared after 14 days withdrawal. The results show that chronic (−)nicotine differentially affects the NMDA-mediated [3H]DA release in the PFC and NAc of the rat.  相似文献   

12.
Roitman MF  Wheeler RA  Carelli RM 《Neuron》2005,45(4):587-597
The nucleus accumbens (NAc) is a key component of the brain's reward pathway, yet little is known of how NAc cells respond to primary rewarding or aversive stimuli. Here, naive rats received brief intraoral infusions of sucrose and quinine paired with cues in a classical conditioning paradigm while the electrophysiological activity of individual NAc neurons was recorded. NAc neurons (102) were typically inhibited by sucrose (39 of 52, 75%) or excited by quinine (30 of 40, 75%) infusions. Changes in firing rate were correlated with the oromotor response to intraoral infusions. Most taste-responsive neurons responded to only one of the stimuli. NAc neurons developed responses to the cues paired with sucrose and quinine. Thus, NAc neurons are innately tuned to rewarding and aversive stimuli and rapidly develop responses to predictive cues. The results indicate that the output of the NAc is very different when rats taste rewarding versus aversive stimuli.  相似文献   

13.
We investigated the effect of beta-oxidation inhibition on the fat ingestive behavior of BALB/c mice. Intraperitoneal administration to mice of mercaptoacetate, an inhibitor of fatty acid oxidation, significantly suppressed intake of corn oil but not intake of sucrose solution or laboratory chow. To further examine the effect of mercaptoacetate on the acceptability of corn oil in the oral cavity, we examined short-term licking behavior. Mercaptoacetate significantly and specifically decreased the number of licks of corn oil within a 60-s period but did not affect those of a sucrose solution, a monosodium glutamate solution, or mineral oil. In contrast, the administration of 2-deoxyglucose, an inhibitor of glucose metabolism, did not affect the intake or short-term licking counts of any of the tasted solutions. These findings suggest that fat metabolism is involved in the mechanism underlying the oral acceptance of fat as an energy source.  相似文献   

14.
Liang J  Ma SS  Li YJ  Ping XJ  Hu L  Cui CL 《Neurochemical research》2012,37(7):1482-1489
Our previous study demonstrated that morphine dose- and time-dependently elevated dopamine (DA) concentrations in the nucleus accumbens (NAc) during the expression of morphine-induced conditioned place preference (CPP) in rats. However, still unknown are how DA concentrations dynamically change during the morphine-induced CPP test and whether tyrosine hydroxylase (TH) activity in the ventral tegmental area (VTA) plays a vital role in this process. In the present study, we measured dynamic changes in TH and phosphorylated TH serine 40 (pTH Ser(40)) and pTH Ser(31) proteins in the VTA, and DA concentrations in the NAc at 5 min intervals during a 30 min morphine-induced CPP test. Rats that underwent morphine-induced CPP training significantly preferred the morphine-paired chamber during the CPP expression test, an effect that lasted at least 30 min in the drug-free state. DA concentrations in the NAc markedly increased at 15 min when the rats were returned to the CPP boxes to assess the expression of preference for the previously drug-paired chamber. DA concentrations then declined 2 h after the CPP test. TH and pTH Ser(40) levels, but not pTH Ser(31) levels, in the VTA were enhanced during the CPP test. These results indicated that TH and the phosphorylation of TH Ser(40) in the VTA may be responsible for DA synthesis and release in the NAc during the behavioral expression of conditioned reward elicited by a drug-associated context.  相似文献   

15.
Elevation of endogenous GABA by the racemic mixture of gamma vinyl-GABA (GVG, Vigabatrin) decreases extracellular nucleus accumbens (NAc) dopamine (DA) levels and diminishes the response to many drugs of abuse known to elevate DA in the mesocorticolimbic system. We investigated the effects of the individual enantiomers (S(+)-GVG, R(-)-GVG) on cocaine-induced NAc DA in rodents as well as the effects of nicotine-induced increases in primates. In a series of microdialysis experiments in freely moving animals, S(+)-GVG (150 mg/kg), R(-)-GVG (150 mg/kg) or racemic (R, S) GVG (300 mg/kg) was administered 2.5 hours prior to cocaine (20 mg/kg) administration. When compared with cocaine alone, the R(-) enantiomer did not significantly inhibit cocaine induced NAc DA release. S(+)-GVG, at half the dose of the racemic mixture (150 mg/kg), inhibited cocaine-induced DA elevation by 40%, while the racemic mixture (300 mg/kg) inhibited cocaine-induced DA release by 31%. In addition, our PET studies in primates demonstrated that S(+)-GVG completely inhibits nicotine-induced increases in the corpus striatum, again at half the dose of the racemic mixture. The R(-) enantiomer was ineffective. Although the S(+) enantiomer has been well established as the active compound in the treatment of epilepsy, the efficacy of this enantiomer with regard to mesolimbic DA inhibition generates a complex series of clinical and neurochemical issues. Further investigations will determine the locus of action and physiologic properties of each enantiomer.  相似文献   

16.
Caffeine and accumbens shell dopamine   总被引:2,自引:1,他引:1  
It has been reported that caffeine (1.5-30 mg/kg i.p.) as well as specific A1 (DPCPX, 8-cyclopentyl-1,3-dipropylxanthine) receptor antagonists fail to increase extracellular dopamine (DA) in the shell of the nucleus accumbens (NAc). However, it has also been reported that caffeine (10 and 30 mg/kg i.p.) and the A1 antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) increases NAc shell DA. To clarify this issue rats were implanted with microdialysis probes at different sites in the NAc shell, in the medial prefrontal cortex (PFCX, infralimbic cortex), and at the border between those areas. Irrespective of probe placement within the NAc shell and of the use of different surgical anesthetics (chloral hydrate and ketamine), we failed to observe changes in dialysate DA after 10 and 30 mg/kg i.p. of caffeine. Similarly negative results were obtained with DPCPX and CPFPX, two potent and selective A1 receptor antagonists. A significant increase of DA was obtained after caffeine when probes were located at the border between the NAc shell and the PFCX (10 and 30 mg/kg) or in the PFCX (10 mg/kg). In view of this and of our previous report that caffeine increases dialysate DA in the medial PFCX, we conclude that the increase in dialysate DA by caffeine observed by others arises from the medial PFCX rather than from the NAc shell as a result of placement of microdialysis probes at the border between the NAc shell and the PFCX.  相似文献   

17.
Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine (DA) levels in brain regions receiving dense VTA input. Since the role of stress in drug addiction is well established, the present study examined the possible involvement of CRF1 receptor in the interaction between morphine withdrawal and catecholaminergic pathways in the reward system. The effects of naloxone-precipitated morphine withdrawal on signs of withdrawal, hypothalamo-pituitary-adrenocortical (HPA) axis activity, dopamine (DA) and noradrenaline (NA) turnover in the nucleus accumbens (NAc) and activation of VTA dopaminergic neurons, were investigated in rats pretreated with vehicle or CP-154,526 (selective CRF1R antagonist). CP-154,526 attenuated the increases in body weight loss and suppressed some of withdrawal signs. Pretreatment with CRF1 receptor antagonist resulted in no significant modification of the increased NA turnover at NAc or plasma corticosterone levels that were seen during morphine withdrawal. However, blockade of CRF1 receptor significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin (ACTH) levels, DA turnover and TH phosphorylation at Ser40 in the NAc. In addition, CP-154,526 reduced the number of TH containing neurons expressing c-Fos in the VTA after naloxone-precipitated morphine withdrawal. Altogether, these results support the idea that VTA dopaminergic neurons are activated in response to naloxone-precipitated morphine withdrawal and suggest that CRF1 receptors are involved in the activation of dopaminergic pathways which project to NAc.  相似文献   

18.
A previous survey of mouse inbred strains revealed a wide range in self-selected fat intake, from 26 to 83% of energy. The BALB/cByJ strain selected a lower percentage of fat intake (36%) than all other strains tested except for the CAST/Ei. BALB/cByJ mice are deficient in the short-chain acyl-CoA dehydrogenase (SCAD) enzyme due to a spontaneous mutation in Acads. We hypothesized that this deficiency would alter fat appetite and used three behavioral test paradigms to compare the response of BALB/cByKz. Acads -/- and BALB/cByKz. Acads +/+ mice to fat stimuli. First, during 10-day exposure to a macronutrient self-selection diet, Acads -/- mice consumed proportionately less fat and more carbohydrate than Acads +/+ mice, yet total energy intake was similar between strains. Next, in 48-h two-bottle preference tests, Acads +/+ mice displayed a preference for 50% corn oil, but Acads -/- mice did not. Finally, in brief-access taste tests employing successive 5-s presentations of corn oil in an ascending concentration series ending with 50%, there were no effects of strain on total licks, indicating that Acads does not alter acute orosensory response to this fat stimulus. With 15-s presentations, however, the Acads +/+ mice licked more of the 50% oil than Acads -/-, suggesting orosensory effects related to the increased exposure time. In contrast to corn oil, there were no strain differences in licking response to sucrose solution in either the two-bottle or brief-access taste tests. The observation that SCAD-deficient mice display altered postingestive responses to dietary fat provides further evidence for the metabolic control of feeding.  相似文献   

19.
Central serotonin2C receptors (5-HT(2C)Rs) control the mesoaccumbens dopamine (DA) pathway. This control involves the constitutive activity (CA) of 5-HT(2C)Rs, and is thought to engage regionally distinct populations of 5-HT(2C)Rs, leading to opposite functional effects. Here, using in vivo microdialysis in halothane-anesthetized rats, we investigated the relative contribution of ventral tegmental area (VTA) and nucleus accumbens shell (NAc) 5-HT(2C)Rs in the phasic/tonic control of accumbal DA release, to specifically identify the nature (inhibition/excitation) of the control, and the role of the 5-HT(2C)R CA. Intra-VTA injections of the selective 5-HT(2C)R antagonists SB 242084 and/or SB 243213 (0.1-0.5 microg/0.2 microL) prevented the decrease in accumbal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p), but did not affect the increase in DA outflow induced by the 5-HT(2C)R inverse agonist SB 206553 (5 mg/kg, i.p). Intra-NAc infusions of SB 242084 (0.1-1 microM) blocked Ro 60-0175- and SB 206553-induced changes of DA outflow. Intra-NAc, but not intra-VTA administration of SB 206553 increased basal DA outflow. These findings demonstrate that both VTA and NAc 5-HT(2C)Rs participate in the inhibitory control exerted by 5-HT(2C)Rs on accumbal DA release, and that the NAc shell may represent a primary action site for the CA of 5-HT(2C)Rs.  相似文献   

20.
Genetic variation in CACNA1C, which codes for the L‐type calcium channel (LTCC) Cav1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic‐dopamine (ML‐DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA‐mediated behaviors elicited by psychomotor stimulants. Using fast‐scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild‐type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML‐DA system function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号