首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We suggest semi-analytical approach to study the optical properties of noble metal nanoparticles and their interaction to the perovskite material (methyl ammonia lead halide: CH3NH3PbI3). Metal nanoparticles embedded in perovskite matrix exhibits broadband surface plasmon resonances, and the tunability of these plasmonic resonances is highly sensitive to particle size. The calculation of optical cross section have been done using Mie scattering theory which is applicable to arbitrary size and spherical-shape metal nanoparticles. We have taken five different radii ranging from 15 to 100 nm to understand the plasmonic resonances and its spectral width in the wavelength range 300 to 800 nm. Out of these noble metal nanoparticles, silver have highest scattering efficiency nearly of the order of 18 for the case of 15 nm radii at resonance wavelength 613 nm. Our finding reveals a new concept to understand the applications of plasmonic resonances in order to enhance the photon absorption inside the thin film of perovskite.  相似文献   

2.
In this paper, we present a peculiar metal-dielectric-metal (MDM) nanosandwich grating structure that can achieve extraordinary optical transmission performances at normal incidence in the ultraviolet-visible-near infrared (UV-VIS-NIR) regions. The proposed structure shows three obvious spectrum characteristics: it can obtain high transmittance up to 80 % in NUV region and efficiently blocking visible wavelengths for transverse-magnetic (TM) polarized incidence; a broadband NIR polarizer can be inspired in the wavelength range from 950 to 1400 nm; more surprisingly, these performances do not deteriorated until 30° tilting angle. Compared to other grating structures with single metal overlayer, it shows wider band-stop characteristics and higher broadband transmission transmittance and extinction ratio (ER) in the investigated wavebands. We analyze the underlying physical mechanism by using numerical simulation, which is primarily attributed to metal ultraviolet transparency, surface plasmon polariton (SPP) at metal/dielectric interface, Fabry–Perot (FP)-like cavity mode within this dielectric grating, and optical magnetic resonance especially in the dielectric interlayer of the MDM sandwiched structure. This structure is very important for developing high-performance subwavelength multifunctional integrated optical devices.  相似文献   

3.
We demonstrate the synthesis and characterization of core–shell nanowires consisting of a non-centrosymmetric KNbO3 core and a gold shell. This type of nanostructure combines the nonlinear optical properties of the core and the plasmonic resonance of the shell in the near infrared spectral range. We report successful spectroscopic measurements on coated single wires to characterize the resonant behavior of the gold shell. We present a theoretical model based on the electrostatic approximation to estimate the enhancement of second-harmonic generation in a nanowire due to the shell. It suggests a possible enhancement factor of up to 4,000 for a system with a nanoshell of 16 nm thickness at a wavelength of 900 nm.  相似文献   

4.
Nanometric wires, in particular, vertically aligned silicon nanowires, possess a huge prospect in current thin film solar cell technologies. A bottom-up process to acquire vertically aligned silicon nanowire (Si-NW) on c-Si wafer was demonstrated and characterized. A well coverage of Si-NWs on c-Si, ca. 6.5 × 108/cm2, was obtained. SEM micrograph confirmed a variation in Si-NW size in length as well as in diameter. On the other hand, inherent optical characteristics of nanometric wires define the performance of such nanowire-based thin film solar cell. Therefore, key factors, such as absorption profile, energy flow, electromagnetic (EM) field, and generation rate distribution in typical model, “Si-NW on c-Si slab,” have been observed at different wavelengths of solar spectrum. A single Si-NW of cylindrical shape was modelled on c-Si and optimized to elucidate the aforementioned characteristics. Light absorption at 700 nm was found to be the best in this scenario, and therefore, EM field and Poynting vector distribution were simulated at the same wavelength. It was revealed that at 700 nm, strongest sites of EM field and energy flow became more available and confined. Exciton generation rate was found to be distributed and confined all the way down to the bottom of the wire. A correlated phenomenon such as optical confinements in spectral characteristics in nanoscale is elucidated. Such a focused prediction in spectral optical characteristics and facile fabrication route is indispensable in optoelectronics as well as nanowire-based advanced electronic design.  相似文献   

5.
We report the design, fabrication, and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor >45% is demonstrated at a wavelength of 780?nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.  相似文献   

6.

In this paper, a high-resolution refractive index sensor is proposed based on a novel metal–insulator–metal plasmonic topology. The structure is based on a Si nano-ring located inside a circular cavity. It acts as an optical notch filter with a quality factor equal to 269. The proposed filter topology is numerically simulated using the finite difference time domain method. It is shown that the proposed filter can also act as a refractive index sensor with a sensitivity of 636 nm/RIU and a fairly high figure of merit (FoM) equal to 211.3 RIU−1. It is shown that the sensor can easily detect a refractive index change of ± 0.001 for dielectrics whose refractive index is between 1 and 1.2. For the refractive index range of 1.33 to 1.52, the maximum FoM of the sensor is 191 RIU−1. The simplicity of the design and its high resolution are the two main features of the proposed sensor which make it a good candidate for biomedical applications.

  相似文献   

7.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

8.
This paper reports a theoretical study on the Fano resonance of a 3D nanocrescent and its application in single molecular detection. The resonance wavelength changes with the crescent radius, gap width and thickness. The Fano resonance is attributed to the interference between the quadrupolar mode supported by the horizontal crescent and the quadrupolar mode supported by the nanotip oscillating along the height direction. The Fano resonance is highly sensitive to a nanoparticle trapped by the nanocrescent. The wavelength shift is larger than 0.5 nm when a single protein nanoparticle with radius only of 1.25 nm is trapped. For a protein with radius of 0.3 nm, the wavelength shift is still larger than 0.03 nm, over the detection limit (10?5 nm) by 3 orders in the magnitude, which indicates that the nanocrescent can be used to detect small molecule with several atoms.  相似文献   

9.
The technique of near and short wave near-infrared spectroscopy was assessed with respect to analysis of dry matter and lipid content of microalgae with potential for biodiesel production. Microalgal culture samples were filtered through GF/C filter papers and spectral measurements of wet and oven dried (60 °C overnight) filter papers over the ranges of 300–1,100 nm and 1,100–2,500 nm were recorded. Partial least square models on culture biomass and lipid content for combined species data were poor in terms of RMSECV, R CV and the ratio of RMSECV to SD. A single species model for C. vulgaris based on 1,100–2,500 nm spectra of dry filtrate supported a model with RMSECV, R CV and SDR values of 0.32 g L?1, 0.955 and 3.38 for biomass and 0.089 g L?1, 0.874 and 2.06 with lipid, respectively. However, the dry filtrate models on biomass and lipid content performed poorly in the prediction of samples drawn from an independent series of C. vulgaris cultured under N-, P- and Fe-limited growth trial. Thus, while the near-infrared spectroscopy technique has potential for assessment of dry matter and lipid content of microalgal cultures using a dried filtrate sample, further work is required to examine the limits to model robustness.  相似文献   

10.
Eu2+ single-doped SiO2 (SiO2/Eu2+) and Eu2+, Ag nanowires co-doped SiO2 (SiO2/Eu2+–Ag) luminescent nanomaterials were prepared by an efficient one-step sol–gel method. Their microstructure and optical properties were characterized, and the fluorescence enhancement of Eu2+ by Ag nanowires was investigated. The experimental results indicate that the average diameter of Ag nanowires doped is 12.5 nm, and the length–diameter ratio is 30. The Ag nanowires cannot only enhance the light absorption of SiO2/Eu2+ in the range of 230–350 nm, but also reduce the fluorescence lifetime of Eu2+. More importantly, the emission intensity is enhanced after doping Ag nanowires, and the red shift phenomenon of the emission spectrum is observed, red shift occurs between 10 and 56 nm. The highest fluorescence intensity is accessed under the Ag doping concentration of 0.10 %. Additionally, the emission of SiO2/Eu2+ with 0.10 % of Ag doping at 456 nm is 16 times stronger than that of pure SiO2/Eu2+. The present results indicate that the fluorescence enhancement is attributed to the local field enhancement and the increased radiative decay rates induced by Ag nanowires.  相似文献   

11.
We report a simple 1D grating device fabrication on ~50 nm gold (Au) film deposited on glass, which is employed as a high performance refractive index (RI) sensor by exploiting the surface plasmon polaritons (SPP) excited by the grating device along the Au/analyte interface. A finite element analysis (FEA) method is employed to maximize the sensitivity of the sensor for a fixed period and thickness of a gold film and its close correspondence with experiment has given the insight for high sensitivity and enhanced transmission. Significantly, in the context of economic design and performance, it is shown that an optimally designed and fabricated 1D grating can be as sensitive as 524 nm/RIU (linearity RI?=?1.33303 to 1.47399), which is remarkably higher than existing reports operating in a similar wavelength region.  相似文献   

12.
Nanoscale twin boundaries (TBs) and surface morphology play a significant role in the yield behaviour of nanowires (NWs). However, few studies have directly compared their effects on the mechanical response of metal NWs. In this article, the mechanical properties of three 〈1 1 1〉 silver NWs with a diameter of 12.2 nm are studied using molecular dynamics simulations. The 〈1 1 1〉 silver NWs are single crystalline rectangular NWs (SCNW), twinned rectangular NWs (TRNW) and faceted twinned NWs (FTNW), respectively. Comparing SCNW and the twinned NWs, we found that a superior combination of higher strength and elasticity was achieved in the twinned NWs by introducing the TBs in elastic region. Then, we also found that the yield strain of FTNW have a strong dependence on TB spacing. Furthermore, a comparison of the incipient plastic deformation between TRNW and FTNW has been made by monitoring defects evolution. To identify the defects evolution, a centrosymmetry parameter was defined and implemented in the self-developed program. And we also compared the effect of TB and surface morphology on mechanical response of three silver NWs. In general, it can be concluded that TBs significantly influence the mechanical properties of metallic NWs and it is more essential than surface morphology.  相似文献   

13.
We report the fabrication and characteristics of a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity (~28 mA/W) and spectral selectivity (~510 nm) in the visible wavelength. The formation of highly stable Ag0 nanoparticles with an average size of 40 nm is observed within the graphene layers, resulting in n-type doping of hybrid material. The absorption peak of graphene-Ag0 hybrid is redshifted to the visible wavelength (~510 nm) from the plasmonic Ag peak (~380 nm) in agreement with the optical simulation results for embedded metal nanoparticles. The study demonstrates the synergistic effect of the graphene-metal nanocomposite, which appears attractive for applications in graphene-based photonic devices.  相似文献   

14.
A method to sense the excitation of surface plasmon polariton (SPP) on metallic grating device using the transmitted signal will be presented. The grating transmittance signal will be fully characterized varying the light incident angle and azimuthal grating orientation by means of the SPP vector model and rigorous coupled-wave analysis simulation. Simulation results will be compared with experimental measurements obtained with a 635 nm wavelength laser in the transverse magnetic polarization mode. The laser will light grating devices in contact with either air or water through a customized microfluidic chamber. A characterization of the diffracted rays will show the relationship between the grating coupling configuration and the Kretschmann one. In fact, the diffracted ray affected by SPP resonance is transmitted with an output angle which is the same incident angle that should be used to excite SPP in Kretschmann configuration. Lastly, the grating parameters (amplitude and metal thickness) impact on transmittance signal will be analyzed with respect to the order zero reflectance signal.  相似文献   

15.
Exciton-plasmon coupling can significantly modify the spectral response of semiconductor quantum dots in a metal nanoparticle-semiconductor complex system. β-In2S3 quantum dots of size ~3 nm and Ag nanospheres of size ~100 nm were synthesized by chemical route and coated over glass substrates. In the strong coupling regime, the plasmons are shown to mediate indirect Coulomb interaction between the quantum dots. In the proximity of Ag plasmons, the excitonic binding energy of the β-In2S3 quantum dots increases by ~500 meV, indicating that the interaction potential between the quantum dots is positive and repulsive in nature. This interaction also leads to strong coupling of the defect levels in the SQD complex. The defect emission wavelength can be enhanced by an order of 102 or shifted from red region (~650 nm) to green (~550 nm) by controlling the plasmon-induced defect level coupling. The experimental observation demonstrates one of the theoretically predicted consequences of exciton-plasmon interaction. This work demonstrates the possibility of harnessing the potential of the two complimentary systems (semiconductor quantum dots and metal nanoparticles) to achieve controllable emission and absorption properties for fabrication of nano plasmonic devices.  相似文献   

16.
Circular lens composed of annularly arranged metal nanoantennas is proposed to achieve far field superresolution focusing. Light illuminating on the nanoantennas’ layer approximately acquires paraboloidal phase profile and then focuses into a spot. Lens constructed by monolayer nanoantennas achieve focusing with FWHM (full width at half maximum) of 924 nm and a focal length of 3385 nm, breaking the diffraction limit. Moreover, tri-layered lens realizes subwavelength focusing with FWHM of 320 nm (about 0.49λ) and the field intensity of focus is optimized to 0.97 a.u. (arbitrary unit). Our proposal shows advances in focusing performance compared with previous work, making it promising in many applications, such as nanolithography, dense storage, and integrated optics.  相似文献   

17.
Metropolis Monte Carlo (MMC) and molecular dynamics (MD) simulations were performed to study the feasibility of synthesising Pt nanowires inside the pores of zeolites with the MOR framework, such as mordenite. Results show that the temperature, the silicon to aluminium ratio (Si/Al) of the zeolite and the Pt metal loading have an important combined effect on the positioning of Pt atoms inside the framework. MMC simulations indicate that low Si/Al and high metal loadings promote the positioning of Pt atoms inside the main pore channels, which are the places where metal nanowires could be formed. On the other hand, high Si/Al and low metal loadings favour the positioning of Pt atoms in the side pockets of the MOR structure. For Pt loadings of 5% (mol/mol), the guest metal atoms were positioned mainly in the main pore channels for all conditions studied. MD simulation results are in agreement with MMC simulations, showing that when Si/Al = ∞, the trend of single Pt atoms is to move towards the side pockets of the MOR framework, while for Si/Al = 5, the Pt atoms remain in the main pore channel of the structure. Temperature had the effect of increasing the mobility of Pt atoms through the MOR framework.  相似文献   

18.
A new strategy for realizing ultra-narrowband plasmonic absorber has been theoretically demonstrated. Dual-band perfect light absorber with the bandwidth down to single digit level and the maximal absorption exceeding 99.2 % is achieved. Moreover, novel absorber-based sensor platform with high-quality factors (S?>?420 nm/RIU, FOM?>?84, and FOM*?>?5600) are obtained. These features hold the proposed absorber to be a feasible candidate for applications in the sensing detection and notch filtering.  相似文献   

19.
We computationally demonstrate one-way optical transmission characteristics of a subwavelength slit. We comparatively study the effect in single layer and double layer metallic corrugations. We also investigate the effect of a dielectric spacer layer between double corrugations to control the volumetric coupling of plasmon and optical modes. We computationally show unidirectional transmission behavior with an ultrahigh contrast ratio of 53.4 dB at λ?=?1.56 μm. Volumetric coupling efficiency through the nanoslit strongly depends on the efficient excitation of both the surface plasmon resonance and metal–insulator–metal waveguide modes. We show that the behavior is tunable in a wide spectral range.  相似文献   

20.
A recently published plasmonic biosensor based on birefringent solid-core microstructured optical fiber is applied for the detection of human blood groups. The birefringent behavior is obtained by removing five central air holes of a two-ring hexagonal lattice of holes in a gold-covered silica fiber with the blood layer surrounding the fiber. The sensing performance of two resonant modes (I based on a phase matching point and II based on a loss matching point) are analyzed. For an increase of the refractive index from 1.3768 (human blood group A) to 1.3796 (human blood group O), the resonance spectral width δλ 0.5 is decreased from 26.8 to 25.8 nm for the core mode I and δλ 0.5 is increased from 28.3 to 33.2 nm for the core mode II. In addition, the amplitude sensitivity S A is increased from 329.7 to 372.2 RIU?1 for the core mode I and S A is decreased from 298.2 to 283.7 RIU?1 for the core mode II. The average value (26.20 nm for core mode I and 31.07 nm for core mode II) of δλ 0.5 from the human blood groups A, B, and O for our plasmonic biosensor is smaller in comparison with a recently published average value (39.10 nm) of the full width at half maximum (FWHM). Our biosensor can be calibrated for a glycerol-water solution by using the linear dependence between the refractive index n a and the mass fraction w of the solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号