首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response curves of gold (Au)-deposited surface plasmon resonance-based glass rod sensors were calculated using a three-layer Fresnel equation while considering various parameters for the sensor system calculations. Au films with thicknesses of 30, 45, and 70 nm were deposited on half of the surfaces of the glass rods, which were 2 mm in diameter, with a deposition length of 100 mm. Sensor elements with Au film thicknesses of 45 nm on glass rods with diameters of 1 and 4 mm and with deposition lengths of 10, 20, and 50 mm were also prepared. The sensor system consists of a light-emitting diode (LED) with a wavelength of 654 nm as the light source with a mini-spectrometer as the detector. The LED intensity distribution, the range of the angle of incidence of light into the sensor element, and the thickness distributions of the Au films deposited on the glass rods were considered to be the important parameters for the calculations. The minimum positions of all the theoretical response curves agreed well with those of the experimental response curves within the limits of the experimental and theoretical uncertainties. Most of the overall response characteristics of the theoretical curves agreed well with those of the experimental curves within the limits of both types of uncertainty. It was found that the thickness distribution of the deposited Au film in the cross-sectional direction dominates the sensor response and thus is the most important parameter for calculation of the sensor properties. The agreements between the experimental and theoretical response curves indicate both the potential and the usefulness of the sensor performance estimation process based on the three-layer Fresnel equation.  相似文献   

2.
We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.  相似文献   

3.
We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca(2+) permeable LGIC and a genetically encoded F?rster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A) serotonin receptors and a chimera of human α7/mouse 5-HT(3A) receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.  相似文献   

4.
The effect of different lectins upon the response of immune sensor based on surface plasmon resonance (SPR) was investigated. Lectins affinity to carbohydrates of the IgG can be used to increase the density and orientation of IgG molecules at their immobilisation on the sensor surface. Conditions were elaborated for enhancement of immune sensor response in comparison with that one for bare or preliminary treated with dodecanthiol thin gold sensor surface. It was shown that human IgG revealed maximal affinity to wheat germ lectin and mouse monoclonal antibodies and rabbit IgG--to helix pomatia lectin. Pig antibodies, similar to human IgG, showed the greatest affinity to wheat germ lectin.  相似文献   

5.
6.
This paper describes the real-time quantification of Pseudomonas aeruginosa (P. aeru) concentrations using a wireless magnetoelastic sensing device. The sensor is fabricated by coating a magnetoelastic ribbon with a polyurethane protecting film. In response to an externally applied time varying magnetic field, the magnetoelastic sensor vibrates at a resonance frequency that can be remotely determined by monitoring the magnetic flux emitted by the sensor. The resonance frequency changes in response to properties changes of a liquid culture medium and bacteria adhesion to the sensor as P. aeru consumes nutrients from the culture medium in growth and reproduction. The effects of properties (conductivity, viscosity, mass) are investigated with quartz crystal microbalance (QCM), microscopy imaging, and conductivity measurement. Using the described technique we are able to directly quantify P. aeru concentrations of 10(3) to 10(8)cells/ml, with a detection limit of 10(3)cells/ml at a noise level of approximately 20 Hz. The lack of any physical connections between the sensor and the monitoring electronics facilitates aseptic operation, and makes the sensor platform ideally suited for monitoring bacteria from within, for example, sealed food containers.  相似文献   

7.
Thickness shear mode quartz-crystal resonator coated with plasma polymer films (PPFs) produced by radio-frequency sputtering of biomaterials and synthetic polymers were examined with respect to their abilities to continuously monitor indoor air. We confirmed the sensory capabilities of an array of PPF sensors to aromas emitted from essential oils at concentrations as low as the detection threshold of human olfaction. Changes in humidity induced a drift in the response curves of PPF sensors. On the contrary, volatile compounds exhibited pulse signals. The pulse signals of a D-phenylalanine sensor and a polyethylene sensor were synchronous, but the direction of the peaks was inverted in most cases. Compared with a photo-ionization detector sensor, the PPF sensors were able to detect subtle changes in the concentrations of volatile compounds in indoor air.  相似文献   

8.
Miniaturized pulse‐amplitude modulated photosynthesis yield analysers are primarily designed for measuring effective quantum yield (ΔF/Fm′) of photosystem II under momentary ambient light conditions in the field. Although this provides important ecophysiological information, it is often necessary to learn more about the potential intrinsic capacities of leaves by measuring light‐response curves. Thus, instruments provide light‐curve programmes, where light intensities are increased in short intervals and instant light‐response curves are recorded within a few minutes. This method can be criticized because photosynthesis will most likely not be in steady state. This technical report shows that with the appropriate precautions instant light curves can nevertheless provide reliable information about cardinal points of photosynthesis. First, the geometry of the light source of the instrument in relation to the quantum sensor must be considered and quantum sensor readings must be corrected. Second, the measurements of the light‐response curves must be compared with readings of effective quantum yield of photosystem II under ambient light conditions where photosynthesis is in steady state. This may show that in the critical range of the light curves either both measurements perfectly coincide or are offset against each other by a constant value (examples are given here). In the first case results of light curves can be taken at face values, and in the second case a simple correction can be applied. With these precautions and careful interpretations instant light‐response curves can be an enormous advantage in ecophysiological field work.  相似文献   

9.
A novel technique of applying a quartz crystal microbalance (QCM) sensor to the on-line real-time detection of microbial populations is described. The pQCM sensor was fabricated by depositing di-para-xylene (parylene) over the entire surface of a QCM sensor through a chemical vapor deposition (CVD) process. An electrically insulated film of parylene on the QCM sensor enabled the operation of the sensor in the liquid environment, and the resonance frequency of the pQCM sensor set in the medium of a cultivation flask shifted in response to the microbial population. The effects of pH, conductivity, and viscosity of the medium on the frequency shift of the pQCM sensor were investigated. Ignorable responses (less than 1% at 10(3)cells) were obtained during an incubation cycle. The detection limit of the pQCM sensor was identified as 10(2) cells ml(-1) with a frequency shift of around 2 x 10(3)Hz. The cell numbers of Escherichia coli cultivated in both the YEM medium and whole milk were detected. A satisfactory correlation (r(2)=0.95) was obtained between the cell number and the response of the pQCM sensor. Experimental results suggest that the pQCM described here is applicable to the continuous long-term detection of microbial populations during a fermentation process.  相似文献   

10.
This paper presents a three-dimensional finite element model of skeletal muscle and its validation incorporating inital tissue strains. A constitutive relation was determined by using a convex free strain energy function (SEF) where active and passive response contributions were obtained fitting experimental data from the rat tibialis anterior (TA) muscle. The passive and active finite strains response was modelled within the framework of continuum mechanics by a quasi-incompressible transversely isotropic material formulation. Magnetic resonance images (MRI) were obtained to reconstruct the external geometry of the TA. This geometry includes initial strains also taken into account in the numerical model. The numerical results show excellent agreement with the experimental results when comparing reaction force-extension curves both in passive and active tests. The proposed constitutive model for the muscle is implemented in a subroutine in the commercial finite element software package ABAQUS.  相似文献   

11.
A surface plasmon resonance (SPR) sensor probe with integrated reference surface is described. In order to fabricate the integrated reference surface, two dielectric layers with different thickness were deposited on the single gold SPR sensor surface via plasma polymerization of hexamethyldisiloxane. The working sensor surface was a 34 nm dielectric layer with immobilized bovine serum albumin (BSA) antigen and an adjacent thin 1 nm dielectric layer without BSA provided reference surface. A specific immunoreaction of anti-BSA antibody was detected after immersion of the SPR probe into sample solution. Simultaneous observation of reference and working surface response enabled determination of the immunoreaction without the need for the baseline measurement. Moreover, compensation of nonspecific adsorption could be confirmed using anti-human serum albumin antibody.  相似文献   

12.
Nanoscale porous silicon waveguide for label-free DNA sensing   总被引:3,自引:0,他引:3  
Porous silicon (PSi) is an excellent material for biosensing due to its large surface area and its capability for molecular size selectivity. In this work, we report the experimental demonstration of a label-free nanoscale PSi resonant waveguide biosensor. The PSi waveguide consists of pores with an average diameter of 20nm. DNA is attached inside the pores using standard amino-silane and glutaraldehyde chemistry. Molecular binding in the PSi is detected optically based on a shift of the waveguide resonance angle. The magnitude of the resonance shift is directly related to the quantity of biomolecules attached to the pore walls. The PSi waveguide sensor can selectively discriminate between complementary and non-complementary DNA. The advantages of the PSi waveguide biosensor include strong field confinement and a sharp resonance feature, which allow for high sensitivity measurements with a low detection limit. Simulations indicate that the sensor has a detection limit of 50nM DNA concentration or equivalently, 5pg/mm2.  相似文献   

13.
A mass spectrometry (MS) membrane sensor was developed and applied to on-line product measurement in acetone-butanol fermentation. The sensor facilitated the monitoring of acetone, butanol, ethanol, H2 and CO2, and single-compound calibration curves for both acetone and butanol showed a linear relationship between the product concentration and the MS response. However, when an actual fermentation was monitored, the product concentration calculated from the MS response was smaller than the concentration determined by gas chromatography, and the relationship between the response and the product concentration was nonlinear. It was found that large amounts of gases (H2, CO2) entering the MS analyzation chamber were causing a ‘space charge effect’, which resulted in an MS response ceiling. The problem could be resolved by reducing the surface area of the sensor membrane. Under some fermentation conditions, a by-product, n-butyl butyrate, was produced, and this interfered with the measurement of butanol due to a peak overlapping effect. However, it was found that this could be compensated for by using an empirical equation. Application of the MS membrane sensor in a fed batch culture of acetone-butanol fermentation resulted in successful control of the butanol concentration.  相似文献   

14.
New optical nanoresonance effects enabled us to study the effect of ions on nanometric carbohydrate thin layers on chips. Immobilization was done via spin coating of the derivatized carbohydrate polymer at a metallized chip surface forming ultrathin films (about 50-300 nm thick) followed by photochemical cross-linking. Deposition of metal-nanoclusters, synthesized by chemical means and sputter coating on top of the polymer, induced an optical resonance effect, which transduced changes of polymer structure quantitatively into an optical signal that can be observed directly as resonance shift of a narrow optical peak. The response of the sensor chip even visible to the eye was quantified spectroscopically in the visible and ir range of the spectrum. The lifetime of thin film was good, and thus application as a sensor was limited only by the mechanical stability of the reactive matrix, but not by photobleaching or molecular leakage. Due to the inherent hydrophilic nature of the alginate polymer, the response time of this new sensor is governed by simple aqueous diffusion of the ionic calcium for up to 300 nm completed within less than one second. Monitoring of calcium fluctuations in a high background of magnesium and even serum was demonstrated with a dynamic range optimal for physiological measurements and a linear response up to 5 mM. Surface and alignment of polymer chain were influenced by the nanostructure of the supporting metal film-contrary to alginic acid, chitosan was deposited well aligned to the nanocrystals of the support.  相似文献   

15.
We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.  相似文献   

16.
The analysis of carbaryl in natural water samples was accomplished using a portable immunosensor based on surface plasmon resonance (SPR) technology. The assay was based on a binding inhibition immunoassay format with the analyte derivative covalently immobilized on the sensor surface. An alkanethiol self-assembled monolayer (SAM) was formed onto the gold-coated sensor surface to allow the reusability of the same sensing surface during 220 regeneration cycles. Reproducibility was evaluated by performing three independent assays in triplicate on 3 different days. The batch-assay variability was also calculated using three different gold-coated sensor surfaces. The intra- and inter-day relative standard deviation were 8.6 and 15.3%, respectively, whilst a variation of 7.4% in assay sensitivity was obtained by employing different sensor chips. The lowest detection limit, calculated as the concentration providing a 10% decrease of the blank signal, was of 1.38 microg L(-1). Matrix effects were also evaluated in different water types, showing I50 values (carbaryl concentrations that produced a 50% decrease of the blank signal) within the range of carbaryl standard curves in distilled water (2.78-3.55 microg L(-1)). The carbaryl immunoassay performance was validated with respect to conventional high-performance liquid chromatography-mass spectrometry (HPLC-MS). The correlation between methods was in good agreement (r2 = 0.998, 0.999 and 0.999) for the three types of natural water samples tested. A complete assay cycle, including regeneration, is accomplished in 20 min. All measurements were carried out with the SPR sensor system (beta-SPR) commercialised by the company SENSIA, SL (Spain). The small size and low-time of response of the beta-SPR platform would allow its utilization in real contaminated locations.  相似文献   

17.
In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.  相似文献   

18.
In this article, we report for the first time, the detection of circulating miRNA as a breast cancer biomarker in patient sera using surface plasmon resonance imaging biosensor. The advantage of this approach lies in the rapid, label-free and sensitive detection. The sensor excites plasmonic resonance on the gold sensor surface and specific DNA-miRNA molecular bindings elucidate responses in the plasmonic resonance image. Experiments of detecting synthetic miRNA molecules (miR-1249) were performed and the sensor resolution was found to be 63.5 nM. The sensor was further applied to screen 17 patient serum samples from National Cancer Centre Singapore and Tan Tock Seng Hospital. Sensor intensity response was found to differ by 20% between malignant and benign cases and thus forms, a potential and an important metric in distinguishing benignity and malignancy.  相似文献   

19.
20.
A mathematical model was developed to describe the dose-response relationship of an optical glucose sensor. The basis for glucose detection is the reversible competitive displacement of a ligand from a receptor protein with specific binding sites for certain carbohydrates. Detection of glucose is based on measurements of the change in fluorescent lifetime of the donor-labeled protein, as it binds to the acceptor-labeled ligand. The sensor was modeled as a hollow fiber membrane, permeable to glucose, which encapsulates a solution of the receptor protein and competing ligand. Model equations that describe the diffusion of glucose through the fiber membrane and the subsequent displacement reactions within the fiber lumen were solved numerically to predict the response time of the sensor following a step change in bulk glucose concentration. The incorporation of an external mass transfer boundary layer was found to increase the response time by a factor of 3.7 over the well-stirred case. On the basis of the results of a parametric study, the response time of the sensor was found to be most sensitive to the diffusion coefficient of glucose in the membrane. When compared to experimental response times for an intensity-based affinity sensor using Concanavalin A as the receptor protein and dextran as the competing ligand, the model predictions were found to be significantly shorter than those observed. The effect of the in vivo environment on the performance of the sensor was also investigated through the incorporation of a fibrotic capsule layer. The additional diffusional resistance offered by the capsular tissue resulted in a 5-fold increase in the response time of the sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号