首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined effects of cholesterol, a major cell membrane component, and the lipid second messenger diacylglycerol on the activity of protein kinase C (PK-C) and the structure of phosphatidylcholine/phosphatidylserine bilayers were investigated using specific PK-C assays and 2H NMR. Whereas the classical activation of PK-C was observed as an effect of diacylglycerol, in the absence of this second messenger, cholesterol did not affect PK-C activity. A novel effect of amplified PK-C activation was observed in the presence of both cholesterol and diacylglycerol concentrations within the physiological range of each of these components. 2H NMR results suggest that this phenomenon is due to cholesterol- and diacylglycerol-induced increased propensity of the lipids to adopt nonbilayer phases, effectively destabilizing the bilayer structure. The magnitude of the effect was a function of cholesterol concentration, implying that laterally separated cell membrane domains with distinct cholesterol concentrations have the capacity to differ in their sensitivity to extracellular stimuli.  相似文献   

2.
The neutrophil oxidative burst is characterized by increased cellular O2 consumption due to the activation of a membrane-associated superoxide-generating NADPH-oxidase. The response is triggered by a variety of stimuli, including opsonized zymosan, formylmethionylleucinephenylalanine (FMLP), arachidonate, short-chain diacylglycerols, and phorbol myristate acetate (PMA). We herein demonstrate that incubation of cells with sphinganine or sphingosine blocks or reverses activation by these agonists. The inhibition is reversible, does not affect cell viability, and does not affect another complex cell function, phagocytosis. Inhibitory concentrations of sphinganine did not significantly affect cytoplasmic calcium levels or FMLP-generated calcium transients. Structural requirements for inhibition of the oxidative burst include a long aliphatic chain and an amino-containing head-group, and there is modest specificity for the native (erythro) isomer of sphinganine. Inhibition involves stimulus-induced activation mechanisms rather than a direct effect on the NADPH oxidase, since sphinganine did not inhibit NADPH-dependent superoxide generation in isolated membranes containing the active enzyme. Activation by FMLP, diacylglycerol, PMA, opsonized zymosan, and arachidonate was blocked by the same concentrations of sphinganine, indicating that these agonists share a common inhibited step. Three lines of evidence indicate that this step involves protein kinase C. First, in a micelle system and in platelets, long-chain bases are inhibitors of this enzyme (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. M. (1986) J. Biol. Chem. 261, 12604-12609). Second, sphinganine blocks PMA-stimulated incorporation of 32PO4 into neutrophil proteins. Third, sphinganine inhibits the binding of [3H]phorbol dibutyrate to its cellular receptor, known to be protein kinase C. We suggest that long-chain bases function as physiologic modulators of cellular regulatory pathways involving protein kinase C.  相似文献   

3.
In the present study, we have examined the potential ability of 5'-AMP-activated protein kinase (AMPK) to modulate NADPH oxidase activity in human neutrophils. AMPK activated with either 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) or with 5'-AMP significantly attenuated both phorbol 12-myristate 13-acetate (PMA) and formyl methionyl leucyl phenylalanine-stimulated superoxide anion O2- release by human neutrophils, consistently with a reduced translocation to the cell membrane and phosphorylation of a cytosolic component of NADPH oxidase, namely p47phox. AMPK was found to be present in human neutrophils and to become phosphorylated in response to either AICAR or other stimulators of its enzyme activity. Furthermore, AICAR also strongly reduced PMA-dependent H2O2 release, and induced the phosphorylation of c-jun N-terminal kinase 1 (p46), p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. Present data demonstrate for the first time that the activation of AMPK, in states of low cellular energy charge (such as under high levels of 5'-AMP) or other signals, could be a factor contributing to reduce the host defense mechanisms.  相似文献   

4.
Human neutrophils stimulated with a phorbol ester (phorbol 12-myristrate 13-acetate or phorbol 12,13-dibutyrate) responded with an increase in diacylglycerol, considered the natural activator of protein kinase C. The amounts of diacylglycerol formed were considerable, reaching 700-900% of basal after 20 min. In contrast, 4-alpha-phorbol 12-myristate 13-acetate did not induce any detectable formation of diacylglycerol. Simultaneously, phorbol 12-myristate 13-acetate exposure caused increased breakdown of both phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. These results suggest that once activated, protein kinase C can positively modulate its own activity by inducing additional formation of diacylglycerol from at least two different sources.  相似文献   

5.
The biochemical mechanism(s) underlying the priming of the macrophage for an enhanced PMA-induced respiratory burst is not understood. Because the cellular receptor for PMA is thought to be protein kinase C (PKC), we have investigated the effects of priming agents on cellular PKC levels. Sonicates from unprimed bone marrow-derived macrophages (BMM) were found to contain PKC activity (309 +/- 51 pmol 32P-incorporated/mg/min; mean +/- SE, n = 17) as measured by the phospholipid-, diacylglycerol-, and calcium-dependent phosphorylation of histone. Exposure of BMM to priming agents such as TNF-alpha, LPS, and granulocyte/macrophage-CSF resulted in a significant increase in both histone-phosphorylating activity and levels of immunoreactive PKC protein in these cells. A minimum of 6-h exposure, with an increasing effect up to 48 h, was required for a detectable increase in PKC level. The activity from primed BMM, like that of the untreated cells, was predominantly cytosolic. The kinetics and concentration dependence of the priming agent-induced increase in the PKC content of BMM closely paralleled the enhancing effects of these agents on the PMA-stimulated respiratory burst. Furthermore, CSF-1, a cytokine that does not prime BMM, failed to increase PKC activity. We propose that the exposure of BMM to priming agents leads to an increase in the expression of a stimulatory isozyme(s) of PKC, resulting in an enhanced ability to mount a respiratory burst in response to stimulation with PMA.  相似文献   

6.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

7.
Evidences have been provided in our laboratory that in neutrophils different signal transduction sequences for the activation of O2(-)-forming NADPH oxidase can be triggered by the same stimulus (Biochem. Biophys. Res. Commun. 1986, 135, 556-565; 1986, 135, 785-794; 1986, 140, 1-11). The results presented here show that the transduction sequence triggered by fluoride via dissociation of G-proteins and involving messengers produced by stimulation of phosphoinositide turnover, Ca2+ changes and translocation of protein kinase C from the cytosol to the plasmamembrane, can be bypassed when a primed state of neutrophils is previously induced. In fact: i) fluoride causes a pertussis toxin insensitive and H-7 sensitive respiratory burst in human neutrophils, which is linked to the activation of hydrolysis of PIP2, rise in [Ca2+]1 and translocation of PKC. In Ca2+-depleted neutrophils these responses to fluoride do not occur and are restored by addition of CaCl2. ii) The pretreatment of Ca2+-depleted unresponsive neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase by fluoride but not the turnover of phosphoinositides and PKC translocation. The nature of the alternative transduction sequence, the reactions different from phospholipase C activated by G-protein for the alternative sequence and the role of these discrete pathways for NADPH oxidase activation are discussed.  相似文献   

8.
Protein kinase C may be important in leukocyte function, because it is activated by phorbol myristate acetate (PMA), a potent stimulus of the respiratory burst in neutrophils. The localization of protein kinase C was compared in unstimulated and PMA-stimulated human neutrophils. Protein kinase C was primarily cytosolic in unstimulated cells but became associated with the particulate fraction after treatment of cells with PMA. The particulate-associated kinase activity did not require added calcium and lipids, but when extracted by Triton X-100 (greater than or equal to 0.2%), calcium and phospholipid dependence could be demonstrated. The EC50 of PMA for stimulating kinase redistribution and activation of NADPH oxidase, the respiratory burst enzyme, were similar (30 to 40 nM). Redistribution of protein kinase C occurred rapidly (no lag) and preceded NADPH oxidase activation (30 sec lag). These results suggest that redistribution of protein kinase C is linked to activation of the respiratory burst in human neutrophils.  相似文献   

9.
This study has investigated the role of protein kinase C (PKC) activation in IgG-mediated phagocytosis by human monocytes. Incubation of monocytes with IgG-opsonized targets increased membrane-associated PKC approximately 2-fold. Kinetic studies showed that the translocation of PKC to membrane occurred before significant ingestion took place. The pharmacologic PKC inhibitor H7 inhibited IgG-dependent ingestion with ID50 of 20 microM, while the structurally related isoquinoline sulfonamide HA1004 had no effect at this concentration. Staurosporine and calphostin C, PKC inhibitors which have different mechanisms of actions than H7, also inhibited ingestion. Depletion of PKC by prolonged incubation with phorbol esters also inhibited phagocytosis, and dose-response curves showed a strong correlation between the extent of PKC depletion and the extent of inhibition of ingestion. Finally, phagosomes were isolated by sucrose density centrifugation of cells disrupted 5 min after the initiation of phagocytosis. Measurement of PKC activity and immunoreactivity in the phagosomes showed that PKC was concentrated in the phagosome membrane approximately 5-fold compared to the uninvolved plasma membrane. Together, these data suggest that PKC activation is an early, essential step in the efficient ingestion of IgG-opsonized targets by monocytes.  相似文献   

10.
Protein kinase C activation by diacylglycerol second messengers   总被引:47,自引:0,他引:47  
R M Bell 《Cell》1986,45(5):631-632
  相似文献   

11.
Electropermeabilization creates small pores in the plasma membrane allowing the introduction of low-molecular-weight modulatory components, such as ions and nucleotides, into the cytosol. The present study investigates fluoride-mediated stimulation of the signal transduction pathway that activates the respiratory burst in electropermeabilized neutrophils. In marked contrast to intact (i.e., non-electropermeabilized) neutrophils, cells permeabilized by this technique demonstrated an immediate and potent stimulation of the superoxide (O2-)-generating NADPH oxidase in response to the addition of fluoride. Furthermore, permeabilization of neutrophils in the presence of exogenously added ATP enhanced the rate of F(-)-mediated O2- production. Fluoride-stimulated O2- production in electropermeabilized neutrophils was antagonized by GDP beta S and dependent upon the presence of Mg2+ in the medium, but was insensitive to pertussis toxin treatment, consistent with the hypothesis that fluoride activates a G protein, probably Gp, by interacting with the nucleotide-binding site on the G alpha subunit. In addition, electropermeabilized neutrophil O2- release triggered by F- was blocked by staurosporine and H-7, indicating that this pathway proceeds largely through protein kinase C activation. However, nucleotide-enhanced O2- production was only partially blocked by these inhibitors, suggesting that under such conditions ATP either competes with the inhibitor-protein kinase interaction or affects the signaling pathway(s) in such a way that protein kinase C may no longer be necessary for the activation of NADPH oxidase.  相似文献   

12.
In neutrophils of patients with essential hypertension the NADPH-dependent O2- production elicited by stimulation with f-Met-Leu-Phe is three to four fold higher in comparison with neutrophils of normotensive control subjects. Neutrophils from hypertensive patients are less responsive to priming, by non-stimulating doses of the agonist, as compared to control cells, which following this pretreatment augment superoxide anion production up to levels close to those expressed by neutrophils from hypertensive patients. No difference in NADPH oxidase activity, between neutrophils from the two groups of subjects, was observed when the rate of O2- production was evaluated in a reconstructed cell-free system containing the membrane fraction and the cytosolic cofactors. These results are consistent with the hypothesis that differences in the functional organization of the oxidase at the membrane level in neutrophils of hypertensive are responsible for the enhanced O2- production following agonist stimulation.  相似文献   

13.
Partially reduced oxygen species are toxic, yet activated sea urchin eggs produce H2O2, suggesting that the control of oxidant stress might be critical for early embryonic development. We show that the Ca2(+)-stimulated NADPH oxidase that generates H2O2 in the "respiratory burst" of fertilization is activated by a protein kinase, apparently to regulate the synthesis of this potentially lethal oxidant. The NADPH oxidase was separated into membrane and soluble fractions that were both required for H2O2 synthesis. The soluble fraction was further purified by anion exchange chromatography. The factor in the soluble fraction that activated the membrane-associated oxidase was demonstrated to be protein kinase C (PKC) by several criteria, including its Ca2+/phophatidylserine/diacyl-glycerol-stimulated histone kinase activity, its response to phorbol ester, its inhibition by a PKC pseudosubstrate peptide, and its replacement by purified mammalian PKC. Neither calmodulin-dependent kinase II, the catalytic subunit of cyclic AMP-dependent protein kinase, casein kinase II, nor myosin light chain kinase activated the oxidase. Although the PKC family has been ubiquitously implicated in cellular regulation, enzymes that require PKC for activation have not been identified; the respiratory burst oxidase is one such enzyme.  相似文献   

14.
We examined the translocation of diacylglycerol kinase (DGK) alpha and gamma fused with green fluorescent protein in living Chinese hamster ovary K1 cells (CHO-K1) and investigated temporal and spatial correlations between DGK and protein kinase C (PKC) when both kinases are overexpressed. DGKalpha and gamma were present throughout the cytoplasm of CHO-K1 cells. Tetradecanoylphorbol 13-acetate (TPA) induced irreversible translocation of DGKgamma, but not DGKalpha, from the cytoplasm to the plasma membrane. The (TPA)-induced translocation of DGKgamma was inhibited by the mutation of C1A but not C1B domain of DGKgamma and was not inhibited by staurosporine. Arachidonic acid induced reversible translocation of DGKgamma from the cytoplasm to the plasma membrane, whereas DGKalpha showed irreversible translocation to the plasma membrane and the Golgi network. Purinergic stimulation induced reversible translocation of both DGKgamma and alpha to the plasma membrane. The timing of the ATP-induced translocation of DGKgamma roughly coincided with that of PKCgamma re-translocation from the membrane to the cytoplasm. Furthermore, re-translocation of PKCgamma was obviously hastened by co-expression with DGKgamma and was blocked by an inhibitor of DGK (R59022). These results indicate that DGK shows subtype-specific translocation depending on extracellular signals and suggest that PKC and DGK are orchestrated temporally and spatially in the signal transduction.  相似文献   

15.
Specificity of 1,2-diacylglycerol for the activation of protein kinase C was investigated with various synthetic products. 1-Stearoyl-2-arachidonylglycerol, a major species of diacylglycerol derived from the receptor-mediated hydrolysis of inositol phospholipids, was most active, but many other diacylglycerols having naturally occurring fatty acids were almost equally active in this role. Hormone-sensitive lipase could produce potentially active diacylglycerols during lipolysis. The lack of the specificity may be reconciled with the possibility that the stearoyl-arachidonyl species is the diacylglycerol with which protein kinase C indeed comes in contact in the membrane when the receptor is stimulated, and that diacylglycerols from other sources are produced in distinct compartments and are not intercalated into the phospholipid bilayer.  相似文献   

16.
Fatty acid activation of protein kinase C: dependence on diacylglycerol   总被引:5,自引:0,他引:5  
The kinetics of activation of protein kinase C by oleic acid have been reinvestigated, using highly purified preparations of the rat brain and bovine spleen enzymes. Activation of both enzymes by oleic acid is enhanced dramatically by diolein, contrary to previous reports. In the presence of 9.7 microM diolein, the concentrations of oleic acid required for half-maximal activation are 5 microM and 9 microM for the rat brain and bovine spleen enzymes respectively, indicating that the system is much more sensitive to activation by fatty acids than previously recognized. Both enzymes also exhibit a pronounced lag in the activation at low concentrations of oleic acid. The kinetics of activation are very similar to those reported by Hannun et al. (J. Biol. Chem 260, 10039-10043), who characterized the activation of the rat brain enzyme by mixed micelles containing Triton X-100, phosphatidylserine and diolein.  相似文献   

17.
The respiratory burst oxidase is a multimeric enzyme responsible for O2- production by stimulated neutrophils and a few other cell types. In the resting neutrophil, the oxidase is dormant, and its subunits are distributed between the cytosol, in which they appear to exist in the form of a multisubunit complex, and the plasma membrane; but, when the neutrophil is activated, the cytosolic complex translocates to the membrane to assemble the active enzyme. Using a cell-free system in which oxidase activity was elicited with SDS, we examined the effects of GTP gamma S and dioctanoylglycerol (DiC8) on both the activation of O2- production and the transfer of the cytosolic oxidase components p47phox and p67phox to the plasma membrane. GTP (added as undialyzed cytosol) and GTP gamma S augmented the transfer of the oxidase components to the plasma membrane and was essential for the acquisition of O2- producing activity by the oxidase. DiC8 also supported the SDS-mediated transfer of oxidase components to the membrane, but O2- production did not take place unless GTP or GTP gamma S was present. In the presence of these nucleotides, however, DiC8 augmented both translocation and O2- production. We interpreted these results in terms of a mechanism in which 2 membrane-binding sites are created during the activation of the cytosolic complex, one for diacylglycerol and the other for a second site on the membrane. Development of the second membrane-binding site depends upon the action of a G protein and is essential for the expression of oxidase activity. The results further suggested that the priming of the respiratory burst oxidase in intact neutrophils might be due to an increase in membrane diacylglycerol concentration that occurs in response to the priming stimulus. Because of the increased diacylglycerol content, a larger than usual amount of active respiratory burst oxidase could be assembled on the primed plasma membrane when the neutrophil is fully activated.  相似文献   

18.
Protein kinase C (PKC) was found to be present in purified human monocytes and lymphocytes isolated by countercurrent centrifugal elutriation. In unstimulated monocytes and lymphocytes, approximately 90% of the PKC activity was cytosolic when the cells were disrupted in the presence of EGTA. The role of this kinase in the stimulation of the respiratory burst in monocytes was investigated. Phorbol esters capable of triggering the release of O2- caused a loss of PKC activity from the cytosol and the appearance of the kinase activity in the particulate cell fraction. Kinase activity was partially extractable from the particulate fraction by 0.1% Triton X-100, whereupon it demonstrated calcium and lipid dependence. The EC50 for the phorbols in initiating the respiratory burst correlated well with their EC50 for stimulating the appearance of PKC activity in the particulate fraction (R = 0.998). Redistribution of PKC activity in monocytes by phorbol myristate acetate (PMA) was rapid and appeared to precede the release of O2-. PMA also shifted PKC activity from the cytosol to the extractable particulate fraction of lymphocytes. We conclude that redistribution of PKC activity by active phorbols or other cell stimulants could provide substrate specificity for phosphorylation reactions. By shifting PKC activity to the monocyte particulate fraction, active phorbols may initiate the phosphorylation of a substrate required for stimulation of the respiratory burst.  相似文献   

19.
The characteristics of PKC activation induced by a number of compounds were investigated using PKCs, partially-purified from sources with a naturally high abundance of certain Ca2+ dependent PKC isoforms. Native isoforms were used rather than PKC isoforms expressed from a baculovirus system to assess the effect of tissue specific factors on activity. However, some data using recombinant PKC were included for comparison.The presence of specific PKC isoforms in different tissues was determined using Western blot analysis. Protein kinase C , 1, , , and / were all present in rat midbrain cytosolic extract, PKC , 1, , and / were present in spleen cytosol, and PKC and / were present in COS 7 cell cytosol. The predominance of and activities in COS 7 and spleen extracts respectively was confirmed by enzymic assay.The PKC activity assay was configured such that the Ca2+ dependence of the PKC activity induced by different PKC activators could be determined. Phorbol 12,13-dibutyrate (PDBu) was virtually equipotent on the Ca2+-dependent PKC activity from midbrain and spleen and slightly less potent on that from COS 7 cells. In the absence of Ca2+, PDBu was considerably less potent overall (as, indeed, were the other PKC activators) and was less potent on COS 7 cell PKC than on those from midbrain or spleen. Mezerein was more potent than PDBu at inducing PKC activity in COS 7 cell extracts in either the absence or presence of Ca2+ whereas in the presence of Ca2+, mezerein was slightly less potent on midbrain and spleen than PDBu and equipotent in the absence of Ca2+. Maximum values for Ca2+-independent activation by mezerein indicated that this activator was particularly effective in recruiting Ca2+-dependent PKC isoform activity in a Ca2+ free environment. The greater potency of mezerein on PKC was confirmed using PKC and further purified from rat spleen by hydroxylapatite (HAP) chromatography. The effects of both PDBu and mezerein were investigated using anterior pituitary tissue where a particularly high potency of mezerein in the absence of Ca2+ was noted. The diacylglycerol, 1,2-dioctanoyl-sn-glycerol (DOG), appeared to cause little or no activation of native Ca2+-dependent isoforms in Ca2+ free conditions unlike another longer chain diacylglycerol, 1,2-dioleoyl-sn-glycerol. Also DOG activated midbrain PKCs more potently than PKCs from spleen or COS 7 cells (or lung and pituitary tissue) in the presence of Ca2+. The concentration-dependence of DOG was examined on PKC and PKC further purified from brain by HAP chromatography, revealing that DOG was equally potent on both of these isoforms derived from brain and on recombinant PKC . However, [3H]PDBu binding data using PKC purified from several sources gave very different IC50 values when DOG was used as a displacer, and in general these values correlated with the EC50 values recorded from the activity assay.The data presented here indicate that there are distinct differences in the activator pharmacology of different native PKC isoforms and between the same isoform expressed in different tissues, either because of post-translational modifications or some other tissue specific factor.  相似文献   

20.
Protein kinase C (PKC) is the only PKC isoform recruited to the immunological synapse after T cell receptor stimulation, suggesting that its activation mechanism differs from that of the other isoforms. Previous studies have suggested that this selective PKC recruitment may operate via a Vav-regulated, cytoskeletal-dependent mechanism, independent of the classical phospholipase C/diacylglycerol pathway. Here, we demonstrate that, together with tyrosine phosphorylation of PKC in the regulatory domain, binding of phospholipase C-dependent diacylglycerol is required for PKC recruitment to the T cell synapse. In addition, we demonstrate that diacylglycerol kinase alpha-dependent diacylglycerol phosphorylation provides the negative signal required for PKC inactivation, ensuring fine control of the T cell activation response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号