首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the number of L-channel populations responsible for producing the two components of whole-cell L-type Ca2+ channel current revealed by Bay K 8644 (Fass, D.M., and E.S. Levitan. 1996. J. Gen. Physiol. 108:1-11), L-type Ca2+ channel activity was recorded in cell- attached patches. Ensemble tail currents from most (six out of nine) single-channel patches had double-exponential time courses, with time constants that were similar to whole-cell tail current decay values. Also, in single-channel patches subjected to two different levels of depolarization, ensemble tail currents exactly reproduced the voltage dependence of activation of the two whole-cell components: The slow component is activated at more negative potentials than the fast component. In addition, deactivation of Bay K 8644-modified whole-cell L-current was slower after long (100-ms) depolarizations than after short (20-ms) depolarizations, and this phenomenon was also evident in ensemble tail currents from single L-channels. Thus, a single population of L-channels can produce the two components of macroscopic L-current deactivation. To determine how individual L-channels produce multiple macroscopic tail current components, we constructed ensemble tail currents from traces that contained a single opening upon repolarization and no reopenings. These ensemble tails were biexponential. This type of analysis also revealed that reopenings do not contribute to the slowing of tail current deactivation after long depolarizations. Thus, individual L-channels must have access to several open states to produce multiple macroscopic current components. We also obtained evidence that access to these open states can vary over time. Use of several open states may give L-channels the flexibility to participate in many cell functions.  相似文献   

2.
The alpha1-subunits of the skeletal and cardiac L-type calcium channels (L-channels) contain nearly identical pore regions (P-regions) in each of the four internal homology repeats. In spite of this high conservation of the P-regions, native skeletal L-channels exhibit a unitary conductance that is only about half that of native cardiac L-channels. To identify structural determinants of this difference in L-channel conductance, we have characterized unitary activity in cell-attached patches of dysgenic myotubes expressing skeletal, cardiac, and chimeric L-channel alpha1-subunits. Our results demonstrate that the S5-S6 linker of repeat I (IS5-IS6 linker) is a critical determinant of the difference in skeletal and cardiac unitary conductance. The unitary conductances attributable to the wild-type skeletal (CAC6; approximately 14 pS) and cardiac (CARD1; approximately 25 pS) alpha1-subunits expressed in dysgenic myotubes are identical to those observed in native tissues. Chimeric alpha1-subunits containing skeletal sequence for the first internal repeat and all of the putative intracellular loops (SkC15), the IS5-IS6 linker and the intracellular loops (SkC51), or only the IS5-IS6 linker (SkC49) each exhibit a low, skeletal-like unitary conductance (< or = 17 pS). Constructs in which the IS5-IS6 linker is of cardiac origin (CARD1 and CSk9) display cardiac-like conductance (approximately 25 pS). Unitary conductance and the rate of channel activation are apparently independent processes, since both SkC51 and SkC49 exhibit low, skeletal-like conductance and rapid, cardiac-like rates of ensemble activation. These results demonstrate that the IS5-IS6 linker strongly influences the single channel conductance of L-channels in a manner that is independent from the rate of channel activation.  相似文献   

3.
In this study, we report the effect of pertussis toxin pretreatment on dihydropyridine modulation of voltage-sensitive calcium channels in PC12 cells. The rise in intracellular calcium concentration caused by potassium depolarization is not affected significantly by pertussis toxin pretreatment. Nicardipine, a dihydropyridine derivative, added either before or after potassium-induced depolarization, reduces the resultant elevation in cytosolic calcium level both in control and in pertussis toxin-treated cells. The dihydropyridine agonist Bay K 8644, when added before potassium, is able to enhance the potassium-induced spike of cytosolic calcium levels, an effect significantly reduced by pertussis toxin pretreatment. Moreover, the addition of Bay K 8644 after potassium holds the intracellular calcium concentration at a cytosolic sustained level during the slow inactivating phase of depolarization. This effect of Bay K 8644 is inhibited by nicardipine. Pertussis toxin pretreatment slightly weakens the effect of Bay K 8644 when added after potassium-induced depolarization, whereas it significantly reduces the nicardipine inhibition of cytosolic calcium rise stimulated by potassium and Bay K 8644, but not by potassium alone. In conclusion, our findings suggest that a pertussis toxin-sensitive guanine nucleotide regulatory protein could be involved in the interaction between dihydropyridine derivatives and voltage-dependent calcium channels.  相似文献   

4.
Single-channel properties of dihydropyridine (DHP)-sensitive calcium channels isolated from transverse tubular (T-tube) membrane of skeletal muscle were explored. Single-channel activity was recorded in planar lipid bilayers after fusion of highly purified rabbit T-tube microsomes. Two populations of DHP-sensitive calcium channels were identified. One type of channel (noninactivating) was active (2 microM +/- Bay K 8644) at steady-state membrane potentials and has been studied in other laboratories. The second type of channel (inactivating) was transiently activated during voltage pulses and had a very low open probability (Po) at steady-state membrane potentials. Inactivating channel activity was observed in 47.3% of the experiments (n = 84 bilayers). The nonstationary kinetics of this channel was determined using a standard voltage pulse (HP = -50 mV, pulse to 0 mV). The time constant (tau) of channel activation was 23 ms. During the mV). The time constant (tau) of channel activation was 23 ms. During the pulse, channel activity decayed (inactivated) with a tau of 3.7 s. Noninactivating single-channel activity was well described by a model with two open and two closed states. Inactivating channel activity was described by the same model with the addition of an inactivated state as proposed for cardiac muscle. The single-channel properties were compared with the kinetics of DHP-sensitive inward calcium currents (ICa) measured at the cellular level. Our results support the hypothesis that voltage-dependent inactivation of single DHP-sensitive channels contributes to the decay of ICa.  相似文献   

5.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

6.
Ca2+ current and tension have been simultaneously recorded from single twitch fibres of the semi-tendinosus of Rana esculenta in a medium containing a physiological Ca2+ concentration (1.8 mM). Under appropriate conditions it can be shown that tension develops in two phases. The first is rapid and reaches its maximum before activation of the inward Ca2+ current. The second phase is slower and with a time course which appears to be correlated with that of the inward current. Nifedipine, a specific Ca2+ channel inhibitor greatly reduced ICa2+ and the slower component of tension. Bay K8644 a Ca2+ channel activator, which has receptors on T-tubule, increased ICa2+ and the slow component of tension. These results indicate that a slow component of skeletal muscle contraction is related to the inward Ca2+ current flowing through dihydropyridine sensitive voltage-dependent Ca2+ channels.  相似文献   

7.
A novel calcium current in dysgenic skeletal muscle   总被引:9,自引:3,他引:6       下载免费PDF全文
The whole-cell patch-clamp technique was used to study voltage-dependent calcium currents in primary cultures of myotubes and in freshly dissociated skeletal muscle from normal and dysgenic mice. In addition to the transient, dihydropyridine (DHP)-insensitive calcium current previously described, a maintained DHP-sensitive calcium current was found in dysgenic skeletal muscle. This current, here termed ICa-dys, is largest in acutely dissociated fetal or neonatal dysgenic muscle and also in dysgenic myotubes grown on a substrate of killed fibroblasts. In dysgenic myotubes grown on untreated plastic culture dishes, ICa-dys is usually so small that it cannot be detected. In addition, ICa-dys is apparently absent from normal skeletal muscle. From a holding potential of -80 mV. ICa-dys becomes apparent for test pulses to approximately -20 mV and peaks at approximately +20 mV. The current activates rapidly (rise time approximately 5 ms at 20 degrees C) and with 10 mM Ca as charge carrier inactivates little or not at all during a 200-ms test pulse. Thus, ICa-dys activates much faster than the slowly activating calcium current of normal skeletal muscle and does not display Ca-dependent inactivation like the cardiac L-type calcium current. Substituting Ba for Ca as the charge carrier doubles the size of ICa-dys without altering its kinetics. ICa-dys is approximately 75% blocked by 100 nM (+)-PN 200-110 and is increased about threefold by 500 nM racemic Bay K 8644. The very high sensitivity of ICa-dys to these DHP compounds distinguishes it from neuronal L-type calcium current and from the calcium currents of normal skeletal muscle. ICa-dys may represent a calcium channel that is normally not expressed in skeletal muscle, or a mutated form of the skeletal muscle slow calcium channel.  相似文献   

8.
We demonstrated recently that purified preparations of Gs, the stimulatory G protein of adenylyl cyclase, can stabilize Ca2+ channels in inside-out cardiac ventricle membrane patches stimulated prior to excision by the beta-adrenergic agonist isoprenaline or by the dihydropyridine agonist Bay K 8644 and that such preparations of Gs can restore activity to spontaneously inactivated cardiac Ca2+ channels incorporated into planar lipid bilayers (Yatani, A., Codina, J., Reeves, J.P., Birnbaumer, L., and Brown, A.M. (1987) Science 238, 1288-1292). To test whether these effects represented true stimulation and to further identify the G protein responsible, we incorporated skeletal muscle T-tubule membranes into lipid bilayers and studied the response of their Ca2+ channels to G proteins, specifically Gs, and manipulations known to be specific for Gs. In contrast to cardiac channels, incorporated T-tubule Ca2+ channels exhibit stable average activities over prolonged periods of time (up to 20 min at room temperature), allowing assessment of possible effects of G proteins under steady-state assay conditions. We report that exogenously added human erythrocyte GTP gamma S (guanosine 5'-O-(3-thiotriphosphate]-activated Gs (Gs) or its resolved GTP gamma S-activated alpha subunit (alpha s) stimulate T-tubule Ca2+ channels by factors of 2-3 in the presence of Bay K 8644, and of 10-20 in the absence of Bay K 8644 and that they do so in a manner that is independent of concurrent or previous phosphorylation by cAMP-dependent protein kinase. Activation of purified Gs by cholera toxin increases both its adenylyl cyclase stimulatory and its Ca2+ channel stimulatory effects. Ca2+ channels previously stimulated by the combined actions of Bay K 8644 and cAMP-dependent protein kinase still respond to Gs. We conclude that the responses seen are due to Gs rather than a contaminant, that the effect on Ca2+ channel activity is that of a true stimulation, akin to that on adenylyl cyclase, and show that a given G protein may regulate more than one effector system.  相似文献   

9.
The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.  相似文献   

10.
Our previous study on kidney cortical slices showed that Bay K 8644, a dihydropyridine calcium channel agonist, produced a dose-dependent inhibitory action on the release of renin. The present study was performed to examine the effect of Bay K 8644 on renal function and renin secretion in vivo. When Bay K 8644 was directly infused into the renal artery of anesthetized rats, 2 micrograms/kg/min had no effect on renal blood flow (RBF) and glomerular filtration rate (GFR), but decreased urine flow (UF), urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) by about 30%, 55% and 35%, respectively, thereby suggesting that Bay K 8644 enhanced the tubular reabsorption of water and sodium. When 10 micrograms/kg/min were infused, RBF, GFR, UF, UNaV and FENa decreased to about 95%, 70%, 35%, 35% and 30% of each control value. The administration of Bay K 8644 at 10 micrograms/kg/min did not influence the basal levels of plasma renin activity (PRA) and renin secretion rate (RSR), but did inhibit significantly isoproterenol-induced increasing effects on PRA and RSR. These results indicate that the activation of voltage-dependent calcium channels with Bay K 8644 influences the control of renal function and renin secretion in vivo.  相似文献   

11.
Bay K 8644, a novel dihydropyridine, stimulates calcitonin secretion in a dose-dependent manner from a rat medullary thyroid carcinoma cell line, rMTC 6-23, and causes an increase in cytosolic free calcium concentration, as measured by quin-2. These effects are competitively inhibited by nifedipine, and completely abolished in the absence of extracellular calcium. These data suggest that calcium influx via voltage-dependent calcium channels plays a crucial role in the regulation of cytosolic free calcium concentration and calcitonin secretion.  相似文献   

12.
Abstract: Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate (BAY K 8644), an analog of dihydropyridine calcium channel antagonists, stimulated 45Ca uptake into PC12 pheochromocytoma cells. Half-maximal stimulation occurred at 80 n M BAY K 8644. Enhancement of uptake was inhibited by cationic and organic calcium channel blockers, but not by tetrodotoxin, which is consistent with an effect on voltage-dependent calcium channels. Stimulation of 45Ca uptake by BAY K 8644 occurred only at elevated concentrations of extracellular K+, suggesting that BAY K 8644 may interact with calcium channels in the open (activated) state.  相似文献   

13.
The agonist effect of the dihydropyridine (DHP) (-)Bay K 8644 and the inhibitory effects of nine antagonist DHPs were studied at a constant membrane potential of 0 mV in Ca channels of skeletal muscle transverse tubules incorporated into planar lipid bilayers. Four phenylalkylamines (verapamil, D600, D575, and D890) and d-cis-diltiazem were also tested. In Ca channels activated by 1 microM Bay K 8644, the antagonists nifedipine, nitrendipine, PN200-110, nimodipine, and pure enantiomer antagonists (+)nimodipine, (-)nimodipine, (+)Bay K 8644, inhibited activity in the concentration range of 10 nM to 10 microM. Effective doses (ED50) were 2 to 10 times higher when HDPs were added to the internal side than when added to the external side. This sidedness arises from different structure-activity relationships for DHPs on both sides of the Ca channel since the ranking potency of DHPs is PN200-110 greater than (-)nimodipine greater than nifedipine approximately S207-180 on the external side while PN200-110 greater than S207-180 greater than nifedipine approximately (-)nimodipine on the internal side. A comparison of ED50's for inhibition of single channels by DHPs added to the external side and ED50's for displacement of [3H]PN200-110 bound to the DHP receptor, revealed a good quantitative agreement. However, internal ED50's of channels were consistently higher than radioligand binding affinities by up to two orders of magnitude. Evidently, Ca channels of skeletal muscle are functionally coupled to two DHP receptor sites on opposite sides of the membrane.  相似文献   

14.
We have investigated the voltage-dependent effects of the dihydropyridine Bay K8644 on Ca channel currents in calf Purkinje fibers and enzymatically dispersed rat ventricular myocytes. Bay K8644 increases the apparent rate of inactivation of these currents, measured during depolarizing voltage pulses, and shifts both channel activation and inactivation in the hyperpolarizing direction. Consequently, currents measured after hyperpolarizing conditioning pulses are larger in the presence of drug compared with control conditions, but are smaller than control if they are measured after positive conditioning pulses. Most of our experimental observations on macroscopic currents can be explained by a single drug-induced change in one rate constant of a simple kinetic model. The rate constant change is consistent with results obtained by others with single channel recordings.  相似文献   

15.
The dihydropyridine (DHP) receptor of normal skeletal muscle is hypothesized to function as the voltage sensor for excitation-contraction (E-C) coupling, and also as the calcium channel underlying a slowly activating, DHP-sensitive current (termed ICa-s). Skeletal muscle from mice with muscular dysgenesis lacks both E-C coupling and ICa-s. However, dysgenic skeletal muscle does express a small DHP-sensitive calcium current (termed ICa-dvs) which is kinetically and pharmacologically distinct from ICa-s. We have examined the ability of ICa-dys, or the DHP receptor underlying it, to couple depolarization and contraction. Under most conditions ICa-dys is small (approximately 1 pA/pF) and dysgenic myotubes do not contract in response to sarcolemmal depolarization. However, in the combined presence of the DHP agonist Bay K 8644 (1 microM) and elevated external calcium (10 mM), ICa-dys is strongly potentiated and some dysgenic myotubes contract in response to direct electrical stimulation. These contractions are blocked by removing external calcium, by adding 0.5 mM cadmium to the bath, or by replacing Bay K 8644 with the DHP antagonist (+)-PN 200-110. Only myotubes having a density of ICa-dys greater than approximately 4 pA/pF produce detectible contractions, and the strength of contraction is positively correlated with the density of ICa-dys. Thus, unlike the contractions of normal myotubes, the contractions of dysgenic myotubes require calcium entry. These results demonstrate that the DHP receptor underlying ICa-dys is unable to function as a "voltage sensor" that directly couples membrane depolarization to calcium release from the sarcoplasmic reticulum.  相似文献   

16.
Depolarizing voltage steps activate voltage-dependent K(+) (Kv) channels by moving the voltage sensor, which triggers a coupling reaction leading to the opening of the pore. We constructed chimeric channels in which intracellular regions of slowly activating Kv2.1 channels were replaced by respective regions of rapidly activating Kv1.2 channels. Substitution of either the N-terminus, S4-S5 linker, or C-terminus generated chimeric Kv2.1/1.2 channels with a paradoxically slow and approximately exponential activation time course consisting of a fast and a slow component. Using combined chimeras, each of these Kv1.2 regions further slowed activation at the voltage of 0 mV, irrespective of the nature of the other two regions, whereas at the voltage of 40 mV both slowing and accelerating effects were observed. These results suggest voltage-dependent interactions of the three intracellular regions. This observation was quantified by double-mutant cycle analysis. It is concluded that interactions between N-terminus, S4-S5 linker, and/or C-terminus modulate the activation time course of Kv2.1 channels and that part of these interactions is voltage dependent.  相似文献   

17.
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels.  相似文献   

18.
J L Bossu  A Elhamdani  A Feltz 《FEBS letters》1992,299(3):239-242
Confluent bovine capillary endothelial cells display, when examined for voltage-dependent calcium entries using cell-attached channel recordings, two types of Ca2+ channels (4 and 23.5 pS in 110 mM Ba2+) both sensitive to the dihydropyridine Ca agonist BAY K 8644. In contrast to isolated cells, confluent cells display no T-type, low threshold activity, and Ca currents were typically only elicited at very depolarized potentials. In these cells, voltage-dependent calcium entries will only be made operative by substances able to shift their activation towards the resting potential.  相似文献   

19.
The skeletal alpha-actin gene encodes a major component of the embryonic cardiac sarcomere that is strongly and selectively re-induced during beta-adrenoceptor-mediated hypertrophy in neonatal rat cardiac myocytes. We present evidence that beta-adrenergic induction of this gene is mediated, not by cAMP, but by a calcium-dependent pathway involving ryanodine-sensitive calcium stores. Nifedipine-induced blockade of the plasma membrane L-type calcium entry channel prevented induction of skeletal alpha-actin mRNA by isoproterenol. Activation of calcium entry by the dihydropyridine agonist Bay K8644 independently induced skeletal alpha-actin mRNA, as did cholera toxin-mediated activation of Gs. Induction of skeletal alpha-actin mRNA by compounds that directly elevate cAMP was weak relative to their effects on other cAMP-dependent phenomena and required calcium entry. In addition, selective inhibition of protein kinase A with KT5720 did not block beta-adrenergic induction of skeletal alpha-actin. Calcium ionophore A23187 did not induce skeletal actin, but prevented its induction by isoproterenol. Ryanodine had bimodal effects: 10(-10) M ryanodine induced skeletal alpha-actin mRNA, whereas 10(-6) M ryanodine prevented skeletal actin induction by beta-adrenergic stimuli. We postulate that beta-adrenergic stimulation of skeletal alpha-actin mRNA requires G-protein-coupled calcium channel activation and compartmentalized calcium release in a manner independent of the cAMP/protein kinase A signal pathway.  相似文献   

20.
Sustained, mild K+ depolarization caused bovine chromaffin cell death through a Ca(2+)-dependent mechanism. During depolarization, Ca(2+) entered preferentially through L-channels to induce necrotic or apoptotic cell death, depending on the duration of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) signal, as proven by the following. (i) The L-type Ca(2+) channel activators Bay K 8644 and FPL64176, more than doubled the cytotoxic effects of 30 mm K+; (ii) the L-type Ca(2+) channel blocker nimodipine suppressed the cytotoxic effects of K+ alone or K+ plus FPL64176; (iii) the potentiation by FPL64176 of the K+ -evoked [Ca(2+)](c) elevation was totally suppressed by nimodipine. Cell exposure to K+ plus the L-type calcium channel agonist FPL64176 caused an initial peak rise followed by a sustained elevation of the [Ca(2+)](c) that, in turn, increased [Ca(2+)](m) and caused mitochondrial membrane depolarization. Cyclosporin A, a blocker of the mitochondrial transition pore, and superoxide dismutase prevented the apoptotic cell death induced by Ca(2+) overload through L-channels. These results suggest that Ca(2+) entry through L-channels causes both calcium overload and mitochondrial disruption that will lead to the release of mediators responsible for the activation of the apoptotic cascade and cell death. This predominant role of L-type Ca(2+) channels is not shared by other subtypes of high threshold voltage-dependent neuronal Ca(2+) channels (i.e. N, P/Q) expressed by bovine chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号