首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The occurrence of extrafloral nectaries (EFNs) in Meliaceae has been reported for some genera, but little anatomical data are available. Therefore, to determine the distribution and structural aspects of EFNs, Cedrela fissilis Vell. leaves in different stages of development were collected, fixed, and processed for light and scanning electron microscopy. On the petiole, rachis and petiolule, EFNs were found to be arranged predominantly towards the abaxial surface, while their occurrence in leaflet blades was restricted to the abaxial surface of the major veins, noticeably on the midrib. Basal leaflets displayed few EFNs; however, we observed an increase towards the leaf's apex. The leaf can contain more than 300 inconspicuous EFNs, which show secretory activity throughout the leaf's life. Two EFN morphotypes were visible: flattened or elevated, both circular or slightly elliptical and similar in origin and tissue composition. The secretory tissue is embedded in the rachis cortex or in the major veins of the leaf blade and EFNs are not vascularized. The EFN secretory pole shows a uniseriate epidermis with compactly arranged cells and a thin cuticle; stomata and trichomes are absent. The observation of ant visits at these structures reinforces the assumption that EFNs mediate ant–plant interactions and play a protective role against herbivores throughout the life of a leaf.  相似文献   

3.
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant–plant–herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade‐offs with new trichomes) that may have affected the evolution of ant–plant associations. We measured seven EFN quantitative traits in all 105 species included in a well‐supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant–EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K‐values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static‐optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade‐off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K‐values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.  相似文献   

4.
In this paper the ontogenesis and histochemistry of the petiolar glands found on the petiole/rachis of the eight Chamaecrista species of the section Absus, subsection Baseophyllum (Leguminosae, Caesalpinioideae) are studied by using light microscopy techniques, aiming to characterise these structures and to provide taxonomic characters which may be useful in phylogenetic approaches. Strips for glucose identification reacted positively with the exudates of the glands, confirming the presence of nectar in the secretion, characterising these glands as extrafloral nectaries (EFN). Histochemical tests also detected the presence of neutral and acid muco-polysaccharides, pectins, mucilages, total proteins, and phenolic compounds in the EFNs. The EFNs arise from a group of meristem cells (protodermis, ground meristem and procambium) in the petiole/rachis. All EFNs of the investigated taxa share some morpho-anatomical characters, so that their peculiarities are too weak to be used alone in the identification of particular species. Rather their similarities may be used to include these species into a single group, supporting the hypothesis of monophyly of the subsection Baseophyllum.  相似文献   

5.
Stryphnodendron adstringens is a common Cerrado tree that possesses extrafloral nectaries (EFNs) on its leaves, which are located at the base and apex of the rachis and along the secondary veins. The position of EFNs and their nectar production can be affected by defense strategies because plant organs possess different values and herbivory vulnerability. Here we aimed to elucidate anatomy, histochemistry, nectar composition and EFN number on leaves of S. adstringens in the light of the optimal defense hypothesis. We found a convergence on anatomy and histochemical characterization because the three studied types of EFNs have epidermis, secretory parenchyma and vascular tissue, showing phenolic compounds and polysaccharides in the secretory parenchyma cells. The nectar contained glucose, fructose and sucrose, which attract ants of the Camponotus and Cephalotes genus. We found differences in the number of EFNs along the secondary veins and in the nectar composition between EFNs located at the base and apex of the rachis of the leaf. The number of EFNs on the secondary veins increases from the base to the apex, suggesting a strategy to induce ant patrolling over the entire leaf region. EFNs at the base secreted more nectar, which should be related to the protection of the leaf base, which is the part most vulnerable to herbivore attack and the most valued organ. We concluded that EFNs of S. adstringens are anti‐herbivore defenses whose pattern matches the predictions of the optimal defense hypothesis.  相似文献   

6.
Extrafloral nectaries (EFNs) are nectar secretory structures involved in the indirect defense of plants. In the sponge gourd (Luffa cylindrica), EFNs commonly occur on the lower surface of leaf blades and stipules and remain functional until leaf senescence. To test the hypothesis that the development of EFNs is influenced by herbivore damage and resource availability, we grew Luffa cylindrica under different concentrations of Hoagland's nutrient solution (nutrient-poor conditions: 10%, 50%; and control condition: 100%) and two herbivory treatments (damaged and undamaged leaves). We collected ten leaves from treated plants to quantify leaf area and EFN density. Overall, leaf area increased and EFN decreased in damaged plants, but this significantly depended on nutritional status. In undamaged plants, EFN density tended to remain constant, whereas foliar area increased with nutrient input. Under herbivory, foliar area increased at 10% but decreased at 50 and 100% of nutrients in relation to undamaged plants, whereas EFN density tended to increase with nutrient availability to exceed undamaged plants under control concentrations. Plants under nutrient-poor conditions subjected to herbivory exhibited an increased foliar area, characterizing a compensatory mechanism. Our results suggest that herbivore-induced indirect defense is a damage- and resource-dependent response in Luffa cylindrica. These findings contribute to understanding the factors that modulate indirect defenses and plant-herbivore-environment interactions.  相似文献   

7.
Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae)   总被引:1,自引:0,他引:1  
Flower morphology, nectary structure, nectar chemical composition, breeding system, floral visitors and pollination were analysed in Croton sarcopetalus , a diclinous-monoecious shrub from Argentina. Male flowers have five receptacular nectaries, with no special vascular bundles, that consist of a uniserial epidermis with stomata subtended by a secretory parenchyma. Female flowers bear two different types of nectaries: inner (IN) and outer (ON) floral nectaries. IN, five in all, are structurally similar to the nectaries of male flowers. The five ON are vascularized, stalked, and composed of secretory, column-shaped epidermal cells without stomata subtended by secretory and ground parenchyma. In addition, ON act as post-floral nectaries secreting nectar during fruit ripening. Extrafloral nectaries (EFN) are located on petioles, stipules and leaf margins. Petiolar EFN are patelliform, stalked and anatomically similar to the ON of the female flower. Nectar sampled from all nectary types is hexose dominant, except for the ON of the female flower at the post-floral stage that is sucrose dominant. The species is self-compatible, but geitonogamous fertilization is rarely possible because male and female flowers are not usually open at the same time in the same individual, i.e. there is temporal dioecism. Flowers are visited by 22 insect species, wasps being the most important group of pollinators. No significant differences were found in fruit and seed set between natural and hand pollinated flowers. This pattern indicates that fruit production in this species is not pollen/pollinator limited and is mediated by a wide array of pollinators.  相似文献   

8.
Extrafloral nectaries (EFNs) are found in many species of Fabaceae. The aim of this work is to describe the internal morphology of the EFNs from species of Fabaceae found in areas of dry‐seasonal forest in north‐eastern Brazil. All species of Fabaceae with EFNs found were collected and samples were submitted to conventional techniques for anatomical and scanning electronic microscopy analysis. EFNs were found in 35 species, of which 32 were examined anatomically. All types have epidermal cells, secretory tissues and vascular bundles in the EFNs. Sclerenchymatous cells were found between the secretory tissues and the vascular tissues, with a few exceptions. The function of these cells is not clear; however, a role in the transportation of the sap in the nectary or with the support of the secretory tissue is possible. The nectar is released through glandular trichomes, secretory pores or even by breaking the epidermal cells and cuticle. The internal patterns found in the EFNs from different species and genera can provide important information for taxonomic and evolutionary studies in the family. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 87–98.  相似文献   

9.

Background and Aims

Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions.

Methods

The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined.

Key results

Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability.

Conclusions

These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits.  相似文献   

10.
A long-standing interest in cactus taxonomy has existed since the Linnaean generation, but an appreciation of the reproductive biology of cacti started early in the 1900s. Numerous studies indicate that plant reproductive traits provide valuable systematic information. Despite the extensive reproductive versatility and specializations in breeding systems coupled with the striking floral shapes, the reproductive biology of the Cactaceae has been investigated in approximately 10% of its species. Hence, the systematic value of architectural design and organization of internal floral parts has remained virtually unexplored in the family. This study represents the most extensive survey of flower and nectary morphology in the Cactaceae focusing on tribes Hylocereeae and Rhipsalideae (subfamily Cactoideae). Our objectives were (1) to conduct comparative morphological analyses of flowers and floral nectaries and (2) to compare nectar solute concentration in these two tribes consisting of holo- and semi-epiphytic species. Flower morphology, nectary types, and sugar concentration of nectar have strong taxonomic implications at the tribal, generic and specific levels. Foremost, three types of nectaries were found, namely chamber nectary (with the open and diffuse subtypes), furrow nectary (including the holder nectary subtype), and annular nectary. All Hylocereeae species possess chamber nectaries, in which the nectarial tissue has both trichomes and stomata. The Rhipsalideae are distinguished by two kinds of floral nectaries: furrow and annular, both nectary types with stomata only. The annular nectary type characterizes the genus Rhipsalis. Nectar concentration is another significant taxonomic indicator separating the Hylocereeae and Rhipsalideae and establishing trends linked to nectar sugar concentration and amount of nectar production in relation to flower size. There is an inverse relationship between flower size and amount of nectar production in the smaller Rhipsalideae flowers, in which nectar concentration is more than two-fold higher despite the smaller volume of nectar produced when compared to the large Hylocereeae flowers. Variability of nectary morphology and nectar concentration was also evaluated as potential synapomorphic characters in recent phylogenies of these tribes. In conclusion, our data provide strong evidence of the systematic value of floral nectaries and nectar sugar concentration in the Cactaceae, particularly at different taxonomic levels in the Hylocereeae and Rhipsalideae.  相似文献   

11.
Nectaries in leaves of Gentianaceae have been poorly studied. The present study aims to describe the distribution, anatomy, and ecological aspects of extrafloral nectaries (EFNs) of three Calolisianthus species and in particular the ultrastructure of EFNs in Calolisianthus speciosus during leaf development, discussing its unusual structure. Leaves of Calolisianthus species were fixed and processed by the usual methods for studies using light, scanning microscopy and transmission electron microscopy (TEM). Ion chromatography was used to analyze the nectar exudates of C. speciosus. The distribution patterns of nectar secretion units were analysed by ANOVA and t-tests. Two EFNs that can be seen macroscopically were observed at the bases of C. speciosus and C. pendulus leaves. Such large nectaries are absent there in C. amplissimus. Another similarly large EFN is observed at the apex of each leaf in all species. The EFNs at the base of the young leaves in C. speciosus are visited by ants during the rainy season. EFNs are formed by several nectar secretory units (nectarioles) that are present throughout the leaves. Each nectariole is formed by rosette cells with a central channel from which the nectar is released. Channels of old C. speciosus and C. pendulus EFNs were obstructed by fungi. TEM of EFNs in young leaves showed cytoplasms with secretion, small vacuoles, mitochondria, cell wall ingrowth, and plasmodesmata. TEM of EFNs in old leaves demonstrated dictyosomes, plastids, mitochondria, segments of endoplasmatic reticulum, and lipid droplets. The nectar contains sucrose, glucose and fructose.  相似文献   

12.
Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations – which resemble Casparian strips – in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post‐secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non‐secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes.  相似文献   

13.
The presence of extrafloral nectaries (EFNs) between leaflets is an usual feature in Inga edulis (Vell.) Mart. (Leguminosae). Extrafloral nectaries are secretory structures involved in production of nectar and which serve in the protection of plants against herbivores through association with ants. This study aimed to characterize the EFNs of I. edulis at different developmental stages and describe their morphology, histochemistry and ultrastructure. Leaf fragments, containing secretory structures, were processed according to standard methods for light, scanning and transmission electron microscopy. The EFNs were classified into three stages based on morphology: pre‐secretory, secretory and post‐secretory. The pre‐secretory stage occurs in young leaves, whereas secretory and post‐secretory stages occur in developed and senescent leaves, respectively. The EFNs possess a concave surface and a central cleft in which nectar is accumulated and which was not observed in pre‐secretory EFNs. Histochemical tests identified the presence of sugars, proteins, phenolic compounds, mucilage and lipids at all developmental stages of the EFNs. Calcium crystals were identified in all tissues and stages of the EFNs. The secretory cells of the EFNs exhibit a granular cytoplasm, small vacuoles, prominent nuclei, smooth endoplasmic reticulum and mitochondria. Post‐secretory stage EFNs exhibited intense cytoplasmic degradation and the presence of microorganisms. The performance of EFNs of I. edulis appear to follow the leaf development.  相似文献   

14.

Background and Aims

Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species.

Methods

EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species.

Key Results

Two distinct kinds of EFNs exist in two unrelated clades within Senna. ‘Individualized’ EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked ‘non-individualized’ EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base.

Conclusions

EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN–ant protective mutualisms and the evolutionary role of EFNs in plant diversification.  相似文献   

15.
BACKGROUND AND AIMS: A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. METHODS: EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. KEY RESULTS: Broad-sense heritability for expression (0.74-0.82) and induction (0.85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than > or =10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related. CONCLUSIONS: Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors.  相似文献   

16.
Phenotypic plasticity enables many damaged plants to increase nectar secretion rates from extrafloral nectaries (EFNs), or in the case of broad bean, Vicia faba L. to produce additional EFNs, to attract natural enemies of herbivores. While plants benefit greatly from these defensive mutualisms, the costs of producing EFNs are largely unknown. We hypothesized that if EFN production is costly, then damaged plants with high resource levels would be able to produce more EFNs than plants that are resource-limited. Here, we show that this indirect inducible defence does follow this general pattern. Vicia faba enriched with 6 or 12 g of 14:14:14 NPK fertilizer increased EFN numbers after leaf damage by 46 and 60%, respectively, compared with nutrient-poor plants. Thus, EFN production is both damage- and resource-dependent. Analogous to direct defences, production of EFNs may limit the overall loss of leaf tissue when risk of herbivory increases.  相似文献   

17.
Unraveling the diversification history of old, species-rich and widespread clades is difficult because of extinction, undersampling, and taxonomic uncertainty. In the context of these challenges, we investigated the timing and mode of lineage diversification in Senna (Leguminosae) to gain insights into the evolutionary role of extrafloral nectaries (EFNs). EFNs secrete nectar, attracting ants and forming ecologically important ant-plant mutualisms. In Senna, EFNs characterize one large clade (EFN clade), including 80% of its 350 species. Taxonomic accounts make Senna the largest caesalpinioid genus, but quantitative comparisons to other taxa require inferences about rates. Molecular dating analyses suggest that Senna originated in the early Eocene, and its major lineages appeared during early/mid Eocene to early Oligocene. EFNs evolved in the late Eocene, after the main radiation of ants. The EFN clade diversified faster, becoming significantly more species-rich than non-EFN clades. The shift in diversification rates associated with EFN evolution supports the hypothesis that EFNs represent a (relatively old) key innovation in Senna. EFNs may have promoted the colonization of new habitats appearing with the early uplift of the Andes. This would explain the distinctive geographic concentration of the EFN clade in South America.  相似文献   

18.
In order to understand the distribution pattern of the extrafloral nectaried plants in the tropical rainforest in Xishuangbanna, Yunnan , China, we investigated seven forest communities ( three primary forests and four secondary forests at different ages) in Xishuangbanna Nature Reserve . Fifty-two species belonging to 36 genera and 23 families accounting for 12.3% of 424 angiosperm species in the seven communities were found to bear extrafloral nectaries ( EFNs ). Among which, eight genera and 37 species were the first time to be recorded as plants to bear EFNs. The study indicated, (1)The EFN species mainly occurred in subclasses Dilleniidae, Rosidae and Asteridae of the Magnoliopsida , and the most common EFNs were flattened glands situated on leaf blades ; (2) The proportions of EFN species within the seven communities ranged from 9.5% ( Vatica guangxiensis forest ) to 18 .5% ( Macaranga denticulata forest ), and the EFN species appeared to be more abundant in the secondary forests than those in the primary forests; (3) EFN species were disproportionally distributed among different growth forms, with the abundance being: tree > shrub > liana > herb , and no epiphytic and parasitic plants were found to bear EFNs.  相似文献   

19.

Background

Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit.

Scope

This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions.

Conclusions

Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.  相似文献   

20.
A survey of bracteal (extrafloral) nectaries in species of Aphelandra (Acanthaceae) reveals substantial diversity. Each bracteal nectary is an aggregate of individual glands that vary in number, size, and structure among species. Glands contain three cell layers: a palisade-like secretory cell layer, a one-to-many-celled intermediate layer with thickened cell walls, and a foot layer. Members of the A. pulcherrima complex have one of two distinct gland types: relatively small glands with a single-celled intermediate layer or larger glands that have a multicellular intermediate layer. Nectaries composed of small glands are patches of many (>50) glands, whereas those composed of large glands are patches of < 10 glands. Four outgroup species have bracteal nectaries of numerous small glands with pluricellular intermediate layers. Glands of all three types are initiated as single enlarged protodermal cells, and all undergo similar early periclinal divisions; the large-gland type shows greater subsequent enlargement with many more anticlinal divisions. The bracteal nectar glands are interpreted to be homologous with simpler glandular trichomes, and mark a monophyletic lineage within Aphelandra. Comparisons with outgroup species show that both nectary types in the A. pulcherrima complex have diverged from an ancestral condition of numerous small glands with pluricellular intermediate layers. Use of the ontogenetic criterion to polarize gland type within the A. pulcherrima complex would yield erroneous results because evolution has apparently involved a developmental truncation with loss of cell divisions in the intermediate layer of small glands. Comparable nectar glands in more distant taxa are interpreted as remarkable cases of convergent evolution, perhaps from similar trichome precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号