首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of a series of tetrahydroisoquinoline (THIQ) alkaloids to inhibit the binding of radioligands to catecholamine receptors in the CNS has been examined. (+) THP was the most potent inhibitor of [3H] dihydroalprenolol binding to β-adrenergic receptors and of [3H] haloperidol to dopaminergic receptors and was the least potent inhibitor of [3H] WB-4101 binding to α-adrenergic receptors. Other THIQ alkaloids examined such as salsoline, salsolinol, and reticuline were less potent than (+) THP in inhibiting radioligand binding to β-adrenergic and dopaminergic receptors, and more potent than (+) THP in inhibiting radioligand to α-adrenergic receptors. The marked potency of (+) THP in inhibiting radioligand binding to β-adrenergic receptors (IC50 ~ 10?7 M) was confirmed by the potency of this compound in inhibiting (?) isoproternol elicited accumulations of cyclic AMP in brain slice preparations. These data indicate that, if formed invivo during alcohol consumption, THIQ derivatives such as THP may affect catecholamine neurons in the CNS.  相似文献   

2.
(?) [3H]Dihydroalprenolol, a potent competitive β-adrenergic antagonist can be used to directly study β-adrenergic receptors by ligand binding techniques in an intact cell system, the frog erythrocyte. At 37°, binding reached equilibrium within 1 minute. Upon addition of excess unlabeled propranolol, complete dissociation of receptor bound ligand occurred within 1 minute. The characteristics of (?) [3Hdihydroalprenolol binding to β-adrenergic receptors in intact cells were quite similar to those previously demonstrated with isolated membrane fractions. The equilibrium dissociation constant for (?) [3H]dihydroalprenolol was 1.5 nM. Order of potency of agonists and antagonists in competing for the binding sites was appropriate for the β-adrenergic receptor as was the stereospecificity of binding ((?) isomers more potent than (+) isomers). Saturation studies with these intact cells indicated 1700 binding sites/cell in excellent agreement with the number previously estimated from membrane studies. Preincubation of cells with 10?5M isoproterenol produced a 36% fall in number of β-adrenergic receptors. It is concluded that (?) [3H]dihydroalprenolol can be used to directly study the properties and regulation of β-adrenergic receptors in intact cell as well as broken cell preparations.  相似文献   

3.
The binding characteristics of the β-adrenergic antagonist, [3H]dihydroalprenolol, to hamster white adipocyte membranes were studied. This binding occurred at two classes of sites, one having high affinity (Kd = 1.6±1.3 nM) but low capacity (32±17 fmol/mg membrane protein) and one having low affinity but high binding capacity. While the binding at the high-affinity sites was competitively and stereoselectively displaced by both β-antagonists and β-agonists, competition at the low-affinity sites occurred only with β-antagonists and was non-stereoselective. Thus, the β-agonist (?)-isoproterenol was further used to define nonspecific binding. Under these conditions, saturation studies showed a single class of high-affinity (Kd = 1.6±0.5 nM) binding sites with a binding capacity of 53 ± 13 fmol/mg membrane protein (corresponding to 4000 ± 980 sites per cell), and independent kinetic analysis provided a Kd value of 1.9 nM. Competition experiments showed that these binding sites had the characteristics of a β1-receptor subtype, yielding Kd values in good agreement with the Kact and the Ki values found for agonist-stimulation and for antagonist-inhibition of adenylate cyclase in membranes and of cyclic AMP accumulation and lipolysis in intact cells. Furthermore, the ability of β-agonists to compete with this binding was severely depressed by p[NH]ppG. These results thus support the contention that the specific [3H]dihydroalprenolol binding sites defined as the binding displaceable by (?)-isoproterenol represent the physiologically relevant β-adrenergic receptors of hamster white adipocytes. Finally, studies of the lipolytic response of these cells to (?)-norepinephrine showed that the inhibitory effect of the α2-component of this catecholamine was apparent only when the effects of endogenous adenosine were suppressed, a result which argues against an important regulatory role for the α2-receptors in the adrenergic control of lipolysis in hamster white adipocytes.  相似文献   

4.
The binding characteristics of the β-adrenergic agonist (±)-[3H]hydroxybenzylisoproterenol to rat adipocyte membranes were studied. Binding was rapid, reaching equilibrium within 10 min at 37°C (second order rate constant k1=1.37·107·M?1·min?1). Dissociation of specific binding by 0.5 mM (?)-isoproterenol suggested dissociation from two different sites with respective dissociation rate constants k2 of 0.106·min?1 and 0.011·min?1.[3H]Hydroxybenzylisoproterenol binding was saturable (Bmax=690±107 fmol/mg protein), yielding curvilinear Scatchard plots. Computer modeling of these data were consistent with the existence of two classes of [3H]hydroxybenzylisoproterenol binding sites, one having high affinity (KD=3.5±0.7 nM) but low binding capacity (10% of the total sites) and one haveing low affinity (KD=101±20 nM) but high binding capacity (90% of the sites). Adrenergic ligands competed with [3H]hydroxybenzylisoproterenol binding with the following order of potency=(?)-propranolol>(?)-isoproterenol>(?)-norepinephrine≈ (?)-epinephrine>>(+)-isoproterenol=(+)-propranolo, which is consistent with binding to β1-adrenergic receptors. Competition curves of [3H]hydroxybenzylisoproterenol binding by the β-agonist (?)-isoproterenol were shallow and modeled to two affinity states of binding, whereas, competition curves by β-antagonist (?)-propranolol were steeper with Hill number near to one. Gpp[NH]p severely reduced [3H]hydroxybenzyl-isoproterenol binding, an effect which apparently resulted from the reduction of the number of both the high and low affinity sites. In membranes which had been previously exposed to (?)-isoproterenol, then number of [3H]hydroxybenzylisoproterenol binding sites was reduced by 50%, an effect which apparently resulted from the loss of part of both the high and low affinity state binding sites. Finally, the ability of (?)-isoproterenol to stimulate adenylate cyclase correlate closely with the ability of (?)-isoproterenol to displace [3H]hydroxybenzylisoproterenol binding. Comparison of these findings with the binding characteristics of the β-antagonist [3H]dihydroalprenolol to rat adipocyte membranes, led to conclude that [3H]hydroxybenzylisoproterenol can be successfully used to label the β-adrenergic receptors of rat fat cells and suggests that it might be a better ligand than [3H]dihydroalprenolol in these cells.  相似文献   

5.
[3H]Yohimbine, a potent α2-adrenergic antagonist, was used to label the α2-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to α2-adrenergic receptors. Binding reached a steady state in 2–3 min at 37°C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10?5 M;t12 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (?) isomer was 11-times more potent than the (+) isomer. Cathecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine > (?)-epinephrine > (?)-norepinephrine >> (?)-isoproterenol. The potent α2-adrenergic antagonist, phentolamine, competed for the sites whereas the β-antagonist, (±)-propanolol, was a very weak inhibitor. 0.1 mM GTP reduced the bindng affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonine competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest tht [3H]yohimbine binding to human platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label α2-adrenergic receptors.  相似文献   

6.
The β-adrenergic receptors in the erythrocyte membranes from turkey, pigeon, and frog have been identified in situ utilizing the photoaffinity label ±[125I]-iodoazidobenzylpindolol, ±[125I]IABP. The molecular weights determined by SDS-polyacrylamide gel electrophoresis are the following: turkey, 43,500; pigeon, 53,500, 46,000, and 45,000 [labeled in a ratio of 5 (53,500):2 (46,000 plus 45,000)]; and frog, a broad 60,000 to 67,000 dalton band. The data identify the binding site subunit(s) of these β-adrenergic receptors and suggest that the receptor structure from different β-receptor subtypes and different sources may be different. These biochemical differences may contribute to the pharmacologically observed distinction of β-receptor subtypes.  相似文献   

7.
The migration of intestinal epithelial cells from the crypts to the tips of villi is associated with progressive cell differentiation. The changes in Na+-pump levels during migration have been measured in epithelial cells isolated from rabbit small intestine. A significant proportion of ouabain-sensitive (Na++K+)-ATPase in the cell homogenates was latent but could be unmasked by detergent treatment. Highest detergent activation was observed in villus cells. The distribution of pumping sites was also assessed by measuring ouabain binding to intact cells. The kinetics of specific binding was consistent with the interaction of the cardiac glycoside with a single population of binding sites with an apparent Kd of around 10?7 M. Both enzyme assay and ouabain-binding measurements suggest that a 2–3-fold increase in the number of Na+-pumping sites accompanies cell differentiation in rabbit jejunal epithelium. This increase in pumping capacity might be an adaptation of the cells to their absorptive function.  相似文献   

8.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

9.
The characteristics of the β-adrenergic receptors in homogenates of fresh tissue and cultured bovine corneal epithelium were compared using [3H]dihydroalprenolol. High affinity, specific binding sites were observed in both preparations. Fresh tissue exhibited a higher binding site density (165 fmol/mg protein) than did cells in culture (57 fmol/mg protein). Studies with various β-adrenergic agonists and antagonists indicated that binding characteristics were typical of β-adrenergic receptors, predominantly of the β2 subtype. These results demonstrate that β-adrenergic receptors exist in both fresh and cultured bovine corneal epithelium and that these receptors are qualitatively and quantitatively similar.  相似文献   

10.
Isolated pituitary cells from metestrous, ovariectomized (OVX), and ovariectomized-estradiol treated (OVX-EB) rats were employed to study the gonadotropin response to luteinizing hormone-releasing hormone (LHRH) challenge and to quantitate LHRH receptors, using a labeled LHRH analog. Ovariectomy (3–4 weeks post castration) resulted in a reduction of LHRH receptor concentration from 34.4 ± 2.1 in metestrous females to 14.3 ± 0.9 fmoles/106 cells. Concomitantly, the luteinizing hormone (LH) response to a near-maximal dose of LHRH (5 ng/ml) decreased from a 3-fold stimulation in intact females to 1.13-fold stimulation in cells from OVX rats. Replacement therapy with EB (50 ug/rat for 2 days) to OVX rats restored LH response and LHRH binding sites (a 2.5-fold stimulation in LH secretion and 32.0 ± 2.1 fmoles/106 cells, respectively). The LH response to LHRH stimulation was not altered after one day of EB treatment although the number of LHRH binding sites was increased. The changes in the number of LHRH binding sites were not accompanied by any alterations in the affinity of the LHRH analog (Kd ? 0.5 × 10?9M). It is concluded that variations in LHRH receptor number reflect the degree of pituitary sensitivity to LHRH and it may suggest that LHRH and estradiol modulation of gonadotropin release is mediated by these receptors.  相似文献   

11.
We have studied muscarinic acetylcholine (ACh) receptors in intact atrial and ventricular heart cells dissociated from 8-day chick embryos and maintained in sparse cell cultures. Two specific antagonists, [3H]quinuclidinyl benzilate (QNB) and [3H]N-methyl scopolamine (NMS), bind to surface sites with affinity (Kds ? 40 and 400 pM, respectively). The concentration of [3H]QNB sites in ventricular cell cultures (460 fmole/mg protein) was comparable to the concentration of sites in atrial cultures (420 fmole/mg protein). The same result was obtained with [3H]NMS. Autoradiography following incubation in saturating concentrations of [3H]QNB shows that nearly all of the atrial and ventricular myocytes were labeled and that the distribution of grains over individual cells was uniform. The mean binding site density was 109/μm2 for atrial cells 117/μm2 for ventricular cells. In contrast to the antagonist binding results, microelectrode recordings from individual myocytes or from small clusters of cells showed that many more atrial myocytes (89%) were sensitive to 10?4M carbachol than were ventricular myocytes (26%). Saline extract of embryonic brain tissue added to the culture medium did not alter the number or distribution of ligand binding sites but it produced a 2.6-fold increase in the number of carbachol-sensitive ventricular cells.  相似文献   

12.
Binding of (?)-[3H]dihydroalprenolol to the synaptic membrane fractions of canine cerebellum was rapid and reversible with rate constants of 1.62 × 108m?1 min?1 and 0.189 min?1 for the forward and reverse reactions, respectively. The binding was of high affinity and saturable with an equilibrium dissociation constant (KD) of 5 to 7 nm. Bound (?)-[3H]-dihydroalprenolol was displaceable with β-adrenergic agonists and antagonists, but not with a variety of other neuroactive substances such as acetylcholine, histamine, serotonin, dopamine, tyramine, (?)-phenylephrine, γ-aminobutyric acid, glycine, and glutamic acid. Adenylate cyclase of the membranes was stimulated at most three times by β-adrenergic agonists, but not significantly by the other neuroactive substances. Guanine nucleotides such as GTP and guanyl-5′-yl imidodiphosphate (Gpp(NH)p) were strictly required for β-adrenergic stimulation of adenylate cyclase with their optimum concentrations of 50 μm, although the nucleotides alone elevated virtually no basal activity. The affinities of β-adrenergic ligands including some stereoisomers for (?)-[3H]dihydroalprenolol binding sites were very similar to those for adenylate cyclase in the presence of GTP. Binding of β-adrenergic agonists to the membranes exhibited an apparent negative cooperativity as determined by displacement of (?)-[3H]dihydroalprenolol in the absence of purine nucleotides. This negative cooperativity was entirely abolished by addition of either GTP or Gpp(NH)p at 50 μm. Both (?)-isoproterenol-stimulated adenylate cyclase activity and binding of (?)-[3H]dihydroalprenolol were not affected by β1-selective antagonists, (±)-atenolol, and (±)-practolol, at concentrations which completely inhibit peripheral β1-responses in vitro, whereas β2-selective agonists such as YM-08316 (BD-40A) and (±)-salbutamol not only stimulated adenylate cyclase but also competitively inhibited binding of (?)-[3H]dihydroalprenolol. These results indicate that canine cerebellar adenylate cyclase may be coupled specifically with β2-adrenergic receptor.  相似文献   

13.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

14.
[3H]-Dihydroergocryptine was used to identify α-adrenergic receptors in a crude adipocyte membrane fraction obtained from hyperthyroid, hypothyroid and euthyroid hamsters. Hyperthyroidism produced a 35–45 % decrease in the number of both the high and the low affinity [3H]-dihydroergocryptine binding sites but failed to affect the respective affinities of both these sites. On the other hand, binding of [3H]-dihydroergocryptine was unaltered in membranes of hypothyroid animals. Hamster adipocyte α-adrenergic responsiveness, reflected by the increment of epinephrine-stimulated cyclic AMP synthesis induced by phentolamine, was 50 % reduced by hyperthyroidism but unchanged by hypothyroidism. These results which demonstrate that thyroid hormones can regulate the density of adipocyte α-adrenergic receptors, suggest that in human fat cells where catecholamines produce opposite α- and β-adrenergic effects on lipolysis, the increased α-adrenergic responsiveness found in hyperthyroidism could be due, at least in part, to a reduction in the number of α-adrenergic receptors.  相似文献   

15.
In order to determine if the development of β-adrenergic receptors may explain the catecholamine evoked contracture of denervated mammalian skeletal muscle, the binding capacities and dissociation constants of β-adrenergic receptors of innervated and denervated rat skeletal muscle membrane preparations were determined by using [3H] dihydroalprenolol. The dissociation constants of [3H] dihydroalprenolol binding to innervated and denervated muscle microsomal suspensions were similar. The maximal number of binding sites increased from 27 pmol/g protein to 85 pmol/g protein following 25 days denervation. These results suggest that motor nerve may be involved in part, in the regulation of β-adrenergic receptors in skeletal muscle membrane preparations.  相似文献   

16.
It is reported that receptors for epidermal growth factor (EGF) in HeLa S3 cells exist in two forms, which differ in both affinity and capacity. Both the number of receptors and their distribution into low- and high-affinity forms are modulated by glucocorticoids. Scatchard analysis of saturation binding assays performed at 0 °C indicates that there is a low-affinity class of receptors (Kd ? 1.5 nm), which contains approximately 6 × 104 binding sites per cell, and a second, high-affinity class of receptors (Kd ? 0.16 nm) containing approximately 5 × 103 binding sites per cell. Exposure of HeLa S3 cells to 10?7m dexamethasone for 24 h increased EGF binding to whole cells by increasing the numbers of low- and high-affinity receptors by 20 and 114%, respectively. The increase in EGF binding depends upon the dose of dexamethasone, being raised from 10?11 to 10?6m. EGF binding is half-maximal near 2–4 × 10?9m, a concentration equal to the Kd of dexamethasone for the glucocorticoid receptor in these cells. The increase in EGF binding is specific for glucocorticoids, occurring when the HeLa S3 cells are exposed to 10?7m cortisol or dexamethasone for 24 h, but not when the cells are similarly treated with testosterone, 5α-dihydroxytestosterone, 17β-estradiol, or progesterone. The effect on EGF binding appears to be biphasic; the initial rapid increase occurs between 8 and 12 h, is blocked by both 10?6m cyclohexamide and 0.1 μg/ml actinomycin D, and is followed by a more gradual increase thereafter. These data indicate that glucocorticoids are able to regulate both the number of EGF receptors and their distribution into high- and low-affinity components. Press, Inc.  相似文献   

17.
Short-term receptor regulation by agonists is a well-known phenomenon for a number of receptors, including β-adrenergic receptors, and has been associated with receptor changes revealed by radioligand binding. In the present study, we investigated the rapid changes in α1-adrenergic receptors induced by agonists. α1-receptors were studied on DDT1 MF-2 smooth muscle cells (DDT1-MF-2 cells) by specific [3H]prazosin binding. In competition binding on membranes and on intact cells at 4°C or at 37°C in 1-min assays, agonists competed for a single class of sites with relatively high affinity. By contrast, in equilibrium binding at 37°C on intact cells agonists competed with two receptor forms (high- and low-affinity). We quantified the receptors in the high-affinity form by measuring the [3H]prazosin binding inhibited by 20 μM norepinephrine (this concentration selectively saturated the high-affinity sites). The low-affinity sites were measured by subtracting the binding of [3H]prazosin to the high-affinity sites from the total specific binding. High-affinity receptors were 85% of the total sites in binding experiments at 4°C, but only 30% at 37°C. On DDT1-MF-2 cells preequilibrated with [3H]prazosin at 4°C, and then shifted to 37°C for a few minutes, norepinephrine selectively reduced the high-affinity sites by 30%. We suggest that at 4°C it is the native form of α1-receptors that is measured, with most of the sites in the high-affinity form, while during incubation at 37°C the norepinephrine present in the binding assay converts most of the receptors to an apparent low-affinity form, so that they are no longer recognized by 20 μM norepinephrine. The nature of this low-affinity form was further investigated. On DDT1-MF-2 cells preincubated with the agonist and then extensively washed at 4°C (to maintain the receptor changes induced by the agonist) the number of receptors recognized by [3H]prazosin at 4°C was reduced by 38%. After fragmentation of the cells, the number of receptors measured at 4°C was the same in control and norepinephrine-treated cells, suggesting that the disruption of cellular integrity might expose the receptors which are probably sequestered after agonist treatment. In conclusion, the appearance of the low affinity for agonists at 37°C may be due to the agonist-induced sequestration of α1-adrenergic receptors, resulting in a limited accessibility to hydrophilic ligands.  相似文献   

18.
Binding characteristics of β-adrenergic receptors of longitudinal muscle membranes isolated from different stages of pregnant rat myometrium were investigated using [3H]dihydroalprenolol. Between Days 15 and 21 of gestation, the ratio of β1- and β2-adrenergic receptors of longitudinal membranes was constant. The membranes were found to be predominant in β2-adrenergic receptors. The concentration of longitudinal muscle β-adrenergic receptors increased significantly during the last 7 days of gestation. Kinetic binding studies implied that the affinity of the membrane β-adrenergic receptors decreased through a slight decrease in the association rate and a large increase in the dissociation rate with progression of pregnancy. A Scatchard plot indicated that longitudinal muscle in β-adrenergic receptors on Days 15 and 18 constitute a single class of independent sites. By contrast, the dissociation kinetics, the convex downward curvature in a Scatchard plot and a Hill coefficient (h) of less than 1.00 of [3H] DHA binding to β-receptors of muscle on Day 21 suggested the existence of negatively cooperative multiple binding sites for β-adrenergic ligand. These results suggest that changes in the dynamics of uterus β-adrenergic receptors play an important role in the onset of labor.  相似文献   

19.
The β-adrenergic receptors of turkey erythrocyte membranes have been identified by the specific binding of the radiolabeled antagonist (?)-|3H|-dihydroalprenolol. Pretreatment of these membranes with either the alkylating agent N-ethylmaleimide or with β-adrenergic agonists does not affect (?)-|3H|-dihydroalprenolol binding to the receptor sites. However, the simultaneous presence of both types of products causes a 50% decline in the number of binding sites. A less pronounced decline occurs when the membranes are pretreated with N-ethylmaleimide in presence of the partial agonist (?)-phenylephrine, and no decline in the presence of the antagonist (?)-|3H|-dihydroalprenolol. β-adrenergic agonists thus appear to induce a conformational change of their receptor, with results in an increased susceptibility to inactivation by N-ethylmaleimide.  相似文献   

20.
Under physiological buffer conditions (17 mM Pi, pH 6.3), the endogenous lectin of Dictyostelium discoideum, discoidin I, binds to two types of receptors on the surface of glutaraldehyde-fixed, wild-type (NC-4) D. discoideum cells. We have designated these two types of receptors the carbohydrate or C sites and the ionic or I sites. Binding to the C sites is saturable with respect to discoidin I and is inhibited by hapten sugars (such as N-acetyl-d-galactosamine), but not by increasing buffer ionic strength with NaCl or polyelectrolytes. The number of C sites increases about 4-fold during the first 8.5 h of suspension differentiation, reaching a capacity for about 2–104 discoidin I tetramers per cell. The binding activity of the C sites is reduced about 50% by sequential NaIO4 oxidation/NaBH4 reduction of the fixed cells, but it is not reduced by CHCl3-CH3OH extraction of the fixed cells. In marked contrast, binding to the I sites appears nonsaturable with respect to discoidin I, and it is inhibited by increasing buffer ionic strength with NaCl or polyelectrolytes (such as poly-l-glutamic acid or heparin), but not by hapten sugars. The I sites are present on both vegetative and differentiated fixed cells and can bind more than 106 discoidin I tetramers per cell. The binding activity of the I sites on fixed cells is not reduced by sequential NaIO4 oxidation/NaBH4 reduction, but is reduced 70 to 90% by CHCl3-CH3OH extraction. The data suggest that the I sites represent ionic lipids that bind discoidin I electrostatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号