首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Abstract: Di-n-propylacetate (DPA), aminooxyacetic acid (AOAA), and gabaculine were administered alone or in combination to Swiss mice. Six hours after administration of the drugs the anticonvulsant action (against isonicotinic acid hydrazide-induced seizures) of AOAA and DPA combined was less than that of AOAA alone. The cause of this phenomenon appeared to be an interaction between DPA and AOAA with respect to inhibition of GABA-T activity, resulting in a long-term diminished inhibition by AOAA, which in turn led to a lessening of the AOAA-induced elevation in the GABA content of nerve endings (synaptosomes). An excellent correlation was observed between the delay in onset of seizures and the elevation of synaptosomal GABA content.  相似文献   

2.
Abstract: The amino acid content of synaptosomes was determined in six regions of rat brain, and in all regions the five predominant amino acids were glutamate, glutamine, aspartate, taurine, and GABA (γ-aminobutyrate). However, the proportions of the individual amino acids varied considerably from one region to another, the GABA content being particularly high and the taurine content low in synaptosomes from the diencephalon and mesencephalon. Administration of isonicotinic acid hydrazide to rats lowered the synaptosomal GABA level by similar amounts in all brain regions, but the administration of gabaculine resulted in a particularly long-acting elevation in GABA levels in the nerve endings of the diencephalon and mesencephalon. The possibility is raised that the high GABA levels in the nerve terminals of the diencephalon may be involved in the gabaculine-induced lowering of the body temperature of the rats. A constancy in the amount of the synaptosomal pool of "aspartate + glutamate + glutamine + GABA" was observed despite large changes in the relative amounts of the four amino acids brought about by gabaculine.  相似文献   

3.
Intramuscular administration of methionine to mice resulted in changes in the levels of aspartate, glutamate, glutamine, and gamma-aminobutyrate in both nerve endings (synaptosomes) and "non-nerve-ending" tissue in the brain. However, the amino acid changes in the two locations differed considerably, not only in the time to onset of the changes, but also in the direction of the changes and in their duration. The results provide additional support for a glutamate-glutamine cycle between neurons and glia, and suggest that the decreases in amino acid levels in the nerve endings are due to an insufficient supply of glutamine from glia or other cellular structures, possibly compounded by an impairment in the uptake of glutamine into the nerve terminals. The primary cause of the glutamine deficiency is unknown because methionine did not affect the enzymes of glutamate and glutamine metabolism. Treatment of mice with methionine also resulted in an anticonvulsant action, but no correlation was observed between the latter phenomenon and the glutamate content of nerve endings.  相似文献   

4.
Abstract: The intramuscular administration of L-cycloserine, gabaculine, and aminooxyacetic acid caused significant, time-dependent increases in the γ-aminobutyric acid (GABA) content of both whole brain and synaptosomalenriched preparations obtained from the tissue, a linear relationship being observed between the two parameters. In contrast, the administration of hydrazine resulted in a large increase in whole brain GABA level, with little change in the synaptosomal GABA content. The key factor in these different responses appeared to be the degree of inhibition of glutamic acid decarboxylase by the drugs. Pretreatment of mice with the GABA-elevating agents resulted in a delay in the onset of seizures, which was related directly to the increase in synaptosomal GABA content. Although the seizures were delayed, they occurred while the GABA content of nerve endings (synaptosomes) was above that in preparations from untreated animals. The decrease in GABA content at the onset of seizures, expressed as a percentage of the level at the time of injection of the convulsant agent, was, however, reasonably constant. A hypothesis to explain these results is proposed.  相似文献   

5.
The potassium-stimulated release of gamma-aminobutyric acid (GABA) from synaptosomes was determined in preparations from control rats and from rats treated with a convulsant agent [isonicotinic acid hydrazide (INH)] and an anticonvulsant agent (gabaculine). INH treatment brought about a significant decrease in Ca2+-dependent release of GABA with no effect on Ca2+-independent release, whereas gabaculine caused an increase in Ca2+-independent release with no effect on Ca2+-dependent release of GABA. Thus, the anticonvulsant action of gabaculine was not a simple reversal of the effects of INH on GABA release. The results indicate that there are at least two pools of GABA in nerve endings and support the hypothesis that exogenous GABA is taken up first into a pool that supplies GABA for Ca2+-independent release and then is transferred to a second pool (Ca2+-dependent releasable), where it mixes with newly synthesized GABA.  相似文献   

6.
Abstract: The intramuscular administration of a γ-aminobutyrate-α-oxoglutarate aminotransferase (GABA-T) inhibitor, gabaculine, to mice resulted in significant increases in GABA content and decreases in the content of aspartate, glutamate, and glutamine in the nerve endings (synaptosomes). These effects were ameliorated by the concurrent administration of the GABA uptake inhibitor ketamine. A major cause of these effects was the gabaculine-induced inhibition of GABA-T activity and the lessening of this inhibition by ketamine. The latter phenomenon was not due to a direct action of ketamine on the enzyme, nor to an interaction between gabaculine and ketamine. Rather, it appeared that ketamine might be interfering with the transport of gabaculine into the cellular structures. The anticonvulsant action of the GABA-T inhibitor and the GABA uptake inhibitor together was little different from that of the GABA-T inhibitor alone.  相似文献   

7.
Abstract— The GABA-elevating agents, aminooxyacetic acid, hydrazine, and hydroxylamine, all possessed anticonvulsant properties, although to a widely varying degree. Aminooxyacetic acid was the most efficacious in delaying drug-induced seizures in mice whereas hydroxylamine brought about only a slight delay in the onset of seizures. The anticonvulsant action was observed against various convulsant agents regardless of whether the convulsant mechanism might involve a deranged GABA metabolism (allylglycine, isonicotinic acid hydrazide, hydrazine), an interference with GABA function (picrotoxin) or some other mechanism (pentylenetetrazol). The anticonvulsant action was not related in a simple manner to either GABA levels or glutamic acid decarboxylase (GAD) activities but the anomalous situation whereby seizures occurred when the GABA content of brain was above normal could be resolved on the basis of an expression which included changes in both GABA levels and GAD activity. The possibility was proposed that the anticonvulsant action of aminooxyacetic acid involved two separate mechanisms.  相似文献   

8.
4-Aminopyridine is a powerful convulsant that induces the release of neurotransmitters, including glutamate. We report the effect of intrahippocampal administration of 4-aminopyridine at six different concentrations through microdialysis probes on EEG activity and on concentrations of extracellular amino acids and correlate this effect with histological changes in the hippocampus. 4-Aminopyridine induced in a concentration-dependent manner intense and frequent epileptic discharges in both the hippocampus and the cerebral cortex. The three highest concentrations used induced also a dose-dependent enhancement of extracellular glutamate, aspartate, and GABA levels and profound hippocampal damage. Neurodegenerative changes occurred in CA1, CA3, and CA4 subfields, whereas CA2 was spared. In contrast, microdialysis administration of a depolarizing K+ concentration and of tetraethylammonium resulted in increased amino acid levels but no epileptic activity and no or moderate neuronal damage. These results suggest that seizure activity induced by 4-aminopyridine is due to a combined action of excitatory amino acid release and direct stimulation of neuronal firing, whereas neuronal death is related to the increased glutamate release but is independent of seizure activity. In addition, it is concluded that the glutamate release-inducing effect of 4-aminopyridine results in excitotoxicity because it occurs at the level of nerve endings, thus permitting the interaction of glutamate with its postsynaptic receptors, which is probably not the case after K+ depolarization.  相似文献   

9.
It has been established that hydrocortisone administration increased the amount of total, free, bound and synaptosomal GABA in the hypothalamus, glutamate decarboxylase activity in the homogenate and synaptosomes and time of the mediator turnover. ACTH administration increased the GABA content and glutamate decarboxylase activity in synaptosomes. The total amino acid content and time of its turnover got higher only with single hormone administration. In the hippocamp hydrocortisone administration increased the total and free GABA contents, its turnover time, glutamate decarboxylase activity in the homogenate and decreased GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA level in synaptosomes grew only with multiple hormone administration. Single administration of ACTH decreased the total GABA content, glutamate decarboxylase activity in the homogenate, while its multiple administration increased the GABA level in synaptosomes followed by a decrease of GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA turnover time fell with single hormone administration and grew with the multiple one. Adrenalectomy induced no changes in the GABA content and activity of its metabolism enzymes in the hypothalamus, however the bound GABA level decreased, while the turnover time increased. In the hippocamp adrenalectomy decreased total, free and synaptosomal GABA contents, glutamate decarboxylase activity in a homogenate and turnover time. Subsequent hydrocortisone administration only partly normalized the revealed changes of the GABA metabolism in the brain structures under adrenalectomy.  相似文献   

10.
Enzymes of glutamate metabolism were studied in synaptosomes prepared from normal rats and those treated with acute (300 mg/kg) and subacute (150 mg/kg) doses of the convulsant methionine sulfoximine (MSO). The activities of glutamine synthetase, glutamate dehydrogenase and aspartate aminotransferase were inhibited in the synaptosomes of drug treated animals. It is suggested that MSO would suppress the formation of glutamine and glutamate and consequently the releasable pool of glutamate, aspartate and GABA. These neurotransmitters would be depleted irom the nerve endings. It is also indicated that the ammonia accumulated would affect the cerebral functioning by interfering with the maintenance of ionic gradients.  相似文献   

11.
Data on convulsant and anticonvulsant action of drugs influencing excitatory amino acid receptors in developing rats are reviewed. Agonists of NMDA type of receptors NMDA and homocysteic acid, elicited an age-related seizure pattern--flexion, emprosthotonic seizures--in the first three postnatal weeks of rats. Generalized clonic-tonic seizures appeared only after a longer latency. Kainic acid administration resulted in epileptic automatisms and later in minimal, clonic seizures followed by generalized tonic-clonic seizures. A decrease of sensitivity to convulsant action with age is a general rule for all agonists tested. Different anticonvulsant action of NMDA and nonNMDA antagonists was demonstrated in a model of generalized tonic-clonic seizures induced by pentetrazol, whereas their action against epileptic afterdischarges elicited by electrical stimulation of cerebral cortex was similar. Again, higher efficacy in younger animals was a rule. As far as metabotropic glutamate receptors are concerned, agonists of groups II and III were shown to protect against convulsant action of homocysteic acid in immature rats and an antagonist of group I receptors MPEP suppressed the tonic phase of generalized tonic-clonic seizures induced by pentetrazol more efficiently in younger than in more mature rat pups. Unfortunately, a higher sensitivity to the action of antagonists of ionotropic glutamate receptors was demonstrated also for unwanted side effects (motor functions were compromized). In contrast, glutamate metabotropic receptor antagonist MPEP did not exhibit any serious side effects in rat pups.  相似文献   

12.
The effect of prolonged treatment (10 days) with the anticonvulsant drugs diphenylhydantoin (DPH), phenobarbitone, sodium valproate, ethosuximide and sulthiame, both singly and in combination, on regional rat brain amino acid neurotransmitter concentrations (GABA, glutamate, aspartate and taurine) were assessed. DPH had a major effect in the cerebellum and hypothalamus in that it significantly reduced cerebellar GABA, taurine and aspartate and hypothalamic GABA and aspartate. Sodium valproate significantly elevated GABA and taurine in most regions. Aspartate and glutamate were less affected. Phenobarbitone significantly elevated GABA concentrations in all brain regions, while taurine concentration was only elevated in the cerebral cortex. Ethosuximide induced changes were small compared to the other anticonvulsants while sulthiame produced complex changes. Anticonvulsant drugs administered in combination resulted in complex changes, suggesting that their mode of action is different.  相似文献   

13.
Abstract: Five inhibitors of the GABA degrading enzyme GABA-aminotransferase (GABA-T), viz., gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate, and aminooxyacetic acid, as well as GABA itself and the antiepileptic sodium vdproate were administered to mice in doses equieffective to raise the electroconvulsive threshold by 30 V. The animals were killed at the time of maximal anticonvulsant effect of the respective drugs and GABA, GABA-T and glutamate decarboxylase (GAD) were determined in whole brain and synaptosomes, respectively. The synaptosomal fraction was prepared from brain by conventional ultracentrifugation procedures. All drugs studied brought about significant increases in both whole brain and synaptosomal GABA concentrations, and, except GABA itself, inhibited the activity of GABA-T. Furthermore, all drugs, except GABA and γ-acetylenic GABA, activated GAD in the synaptosomal fraction. This was most pronounced with ethanolamine O -sulphate, which induced a twofold activation of this enzyme but exerted only a weak inhibitory effect on GABA-T. The results suggest that activation of GAD is an important factor in the mechanism by which several inhibitors of GABA-T and also valproate increase GABA concentrations in nerve terminals, at least in the relatively non-toxic doses as used in this study.  相似文献   

14.
—Bulk prepared neuronal perikarya, nerve endings and glial cells have been used to study amino acid concentrations and GABA metabolism in vitro. All amino acids were more concentrated in synaptosomes and glial cells than in neuronal perikarya. Cell specificity was found with respect to the relative distribution of some amino acids. Glutamate decarboxylase activity was considerably higher in synaptosomes than in glial cells. The inhibitory effect of amino-oxyacetic acid on glutamate decarboxylase activity differed between synaptosomes and glial cells. γ-Aminobutyric acid-α-ketoglutarate transaminase had the highest activity in the glial cell fraction; the inhibition of amino-oxyacetic acid differed between glial and neuronal material. The metabolism of exogenous GABA just accumulated by a cell showed similar time characteristics in neuronal and glial material.  相似文献   

15.
—The stability of the GABA content of synaptosomal-enriched fractions was evaluated by two approaches. Firstly, the addition of 10?3m -aminooxyacetic acid to the homogenizing medium totally inhibited the GABA-degrading enzyme in the fractions but did not affect the GABA levels. This indicated that GABA was not being metabolized during the normal preparation of the synaptosomal-enriched fraction. Secondly, when synaptosomal-enriched fractions were re-fractionated by discontinuous density gradient centrifugation, the GABA contents of the fractions before and after the second fractionation were very similar provided they were expressed on a per mg protein basis. It was therefore concluded that the GABA content of the organelles was not subject to change during the fractionation procedures. On the basis of these findings and others it was suggested that the synaptosomal-enriched fraction could be used as a model to evaluate drug-induced changes in GABA levels in nerve endings. In vivo experimentation indicated that the convulsant agents hydrazine, isonicotinic acid hydrazide and aminooxyacetic acid brought about similar decreases in the GABA content of the synaptosomal-enriched fractions prepared from tissue at the onset of seizures despite the fact that no correlation was observed between seizure activity and whole brain GABA levels.  相似文献   

16.
The GABAergic system was investigated in C-6 astrocytoma cells and C-1300 neuroblastoma cells in culture and compared to that in mouse brain. The activities of glutamate decarboxylase, GABA-transaminase, succinic semialdehyde dehydrogenase and glutamate dehydrogenase were measured. In the cultured cells, only glutamate dehydrogenase activity was equal or greater than that of mouse cerebral cortex. Glutamate decarboxylase in both cell lines was 2%, while GABA-transaminase and succinic semialdehyde dehydrogenase activities were less than 20% of those found in brain. In spite of the disparate enzyme activities, GABA, glutamate, and -ketoglutarate concentrations were similar in the cell lines and cerebral cortex. The anticonvulsant drugs sodium valproate and aminooxyacetic acid increased cortical GABA concentrations but either had no effect or decreased GABA in the cells in a complete medium. The convulsant isoniazid decreased GABA in mouse brain but had no effect in either cell line. In the absence of pyridoxal in the medium, some drug effects could be induced in the cultured cells. It is concluded that the differing responses of the GABAergic system in the mouse brain and cell lines may be attributed in part to the fact that the cells do not represent an integrated system and are of tumor origin.  相似文献   

17.
Small molecules present during brain tissue homogenization are known to be entrapped within subsequently isolated synaptosomes. We have revisited this technique in view of its systematic utilization to incorporate into nerve endings impermeant probes of large size. Rat neocortical synaptosomes were prepared in the absence or in the presence of each of the following compounds: 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), tetanus toxin (TeTx) or its light chain (TeTx-LC), pertussis toxin (PTx), anti-syntaxin, or anti-SNAP25 monoclonal antibodies. Release of endogenous GABA and glutamate was then evoked by high K+ depolarization. GABA and glutamate overflows were inhibited by entrapped BAPTA and in synaptosomes prepared by homogenization in the presence of varying concentrations of TeTx or TeTx-LC. When synaptobrevin cleavage in synaptosomes entrapped with TeTx was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by western blotting, the extent of proteolysis was found to correspond quantitatively to that of release inhibition. GABA and glutamate overflows were increased by entrapped PTx; moreover, (-)-baclofen inhibited amino acid overflow more potently in standard than in PTx-containing synaptosomes. The overflows of GABA and glutamate were similarly decreased following incorporation of anti-syntaxin or anti-SNAP25 antibodies. Synaptosomal entrapping may be routinely used to internalize membrane-impermeant agents of different size in studies of presynaptic mechanisms.  相似文献   

18.
Abstract: 2-Amino-7-phosphonoheptanoic acid, an antagonist of excitation caused by dicarboxylic amino acids with a selective action on N -methyl-d-aspartate receptors, has been administered in an anticonvulsant dose (1 mmol/kg i.p.) to fed or fasted rats and mice. The drug impaired motor activity in fasted mice. Glucose and amino acids were determined in dissected regions of brain fixed by microwave irradiation. Glucose content was low in the brains of fasted rats and mice but was restored to normal (fed) concentration 45 min after the administration of 2-amino-7-phosphonoheptanoic acid in fasted mice. In fed animals, 2-amino-7-phosphonoheptanoic acid did not change brain aspartate concentration. In fasted animals, aspartate concentration was raised in most brain regions. In fasted rats and mice, 2-amino-7-phosphonoheptanoic acid significantly increased glutamine in rat cortex and mouse striatum, decreased glutamate content in rat striatum, and decreased aspartate concentration in all regions except mouse cortex and striatum. GABA levels were significantly decreased in rat striatum and hippocampus. These changes are consistent with an increased synaptic release of glutamate and aspartate following blockage of their post-synaptic action at selected sites.  相似文献   

19.
The aim of the present paper was to determine whether the release of glutamate from putative "glutamergic" terminals in the cerebellum is influenced by gamma-aminobutyric acid (GABA). In a group of preliminary experiments, we present biochemical evidence in favour of a neurotransmitter role of glutamate in the cerebellum: (1) endogenous glutamate was released from depolarized cerebellar synaptosomal preparations in a Ca2+-dependent away; (2) [14C]glutamate was synthesized from [14C]glutamine in cerebellar synaptosomes, and the newly synthesized [14C]glutamate was released released in a Ca2+-dependent way; (3) the elevation of cyclic GMP elicited by depolarization of cerebellar slices in the presence of Ca2+ was partly reversed by the glutamate antagonist glutamic acid diethyl ester, which probably prevented the interaction of endogenously released glutamate with postsynaptic receptors. GABA and muscimol at low concentrations (2--20 micrometers) potentiated the depolarization-induced release of D-[3H]aspartate (a glutamate analogue which labels the glutamate "reuptake pool") from cerebellar synaptosomes. The effect was concentration dependent and was largely prevented by two GABA antagonists, bicuculline and picrotoxin. The stimulation of D-[3H]aspartate release evoked by muscimol was linearly related to the logarithm of K+ concentration in the depolarizing medium. GABA did not affect the overall release of endogenous glutamate, but potentiated, in a picrotoxin-sensitive manner, the depolarization-evoked release of [14C]glutamate previously synthesized from [14C]glutamine. Since nerve endings are the major site of glutamate synthesis from glutamine, GABA and muscimol appear to exert their stimulatory effect at the level of "glutamergic" nerve terminals, probably after interacting with presynaptic GABA receptors. The possible functional significance of these findings is briefly discussed.  相似文献   

20.
A procedure is described for the rapid preparation of nerve ending particles (synaptosomes) from 11 regions of one rat brain. The synaptosomal fractions have been characterized by electron microscopy and determination of four marker enzymes, i.e., glutamate decarboxylase (GAD), acetylcholinesterase, succinate dehydrogenase, and glycerol 3-phosphate dehydrogenase. Comparison with a much lengthier standard (Ficoll-sucrose) preparation showed that the synaptosomal yield of the new procedure was substantially better as judged by both morphological evaluation and protein recovery. The improved synaptosome preparation was used for determination of regional gamma-aminobutyric acid (GABA) levels in synaptosomal fractions. The postmortem increase in GABA level during removal and dissection of brain tissue and homogenization and fractionation procedures could be minimized by rapid processing of the tissue at low temperatures and inclusion of the GAD inhibitor 3-mercaptopropionic acid (3-MP; 1 mM) in the homogenizing medium. The addition of GABA (0.2 mM) to the homogenizing medium did not alter the GABA levels in the synaptosomes, indicating that no significant redistribution of GABA occurred during subcellular fractionation in sodium-free media. Synaptosomal GABA levels determined in the 11 rat brain areas showed the same regional distribution as the GABA-synthesizing enzyme GAD. On the basis of these findings, it was suggested that the synaptosome preparation could be used to evaluate the in vivo effects of drugs on nerve terminal GABA. Treatment of rats with a convulsant dose of 3-MP (50 mg/kg i.p.) 3 min before decapitation significantly lowered synaptosomal GABA levels in olfactory bulb, hippocampus, thalamus, tectum, and cerebellum. The 3-MP-induced seizures and reduction of GABA levels could be prevented by administration of valproic acid (200 mg/kg i.p.) 15 min before the 3-MP injection. The data indicate that the improved synaptosome preparation offers a convenient method of preparing highly purified synaptosomes from a large number of small tissue samples and can provide useful information on the in vivo effects of drugs on regional GABA levels in nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号