首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of ICR 2A frog cells to repair DNA damage induced by ultraviolet irradiation was examined. These cells are capable of photoreactivation but are nearly totally deficient in excision repair. They have the ability to convert the small molecule weight DNA made after irradiation into large molecules but do not show an enhancement in this process when the UV dose is delivered in two separate exposures separated by a 3- or 24-h incubation. Total DNA synthesis is depressed and low molecular weight DNA continues to be synthesized during pulse-labeling as long as 48 h after irradiation. The effects of pyrimidine dimer removal through exposure of UV irradiated cells to photoreactivating light indicate that dimers act as the critical lesions blocking DNA synthesis.  相似文献   

2.
Summary We investigated the influence of aminoacidless treatments applied prior and after UV irradiation on survival, dimer excision, postirradiation DNA degradation, DNA synthesis and sedimentation profiles of parental DNA ofE. coli B/r Hcr+ cells. In dependence on the treatment applied, the fluence 50 J/m2 yielded distinctly different fractions of survivors within 0,03–85%. In all cases dimers were completely excised. The rate of DNA degradation was similar during a 30–40 min period after UV during which the bulk of dimers was excised. Degradation ceased, however, earlier in the prestarved cells than in exponentially growing ones; it was prolonged by aminoacidless postincubation. Sedimentation profiles of parental DNA did not differ during the whole period of dimer excision. In cells DNA synthesis was not restored for several hours after addition of amino acids. In cells addition of amino acids resulted in a fast resumption of DNA synthesis. We conclude that removal of dimers and repair of gaps were similar in all cases. We believe that aminoacidless treatments influence production and repair of damage to the sites of DNA replication. The treatment appears to prevent this damage when applied before UV irradiation, but interferes with its restoration when applied after UV irradiation. Consequently, the former treatment increases survival of cells while the latter produces an opposite effects.  相似文献   

3.
Pyrimidine dimer-DNA glycosylase activity prepared from Micrococcus luteus has been used to develop an enzyme-sensitive site assay for the detection and quantification of closely opposed pyrimidine dimers in the nuclear DNA of UV-irradiated yeast. With this assay, closely opposed dimers were found to be induced as a linear function of dose from 0 to 200 J/m2 (254 nm). Closely opposed dimer frequencies decreased during the incubation of UV-irradiated, excision repair-proficient cells under liquid-holding conditions in the dark and during post-irradiation exposure of excision-deficient cells to photoreactivating light. Incubation of excision-deficient cells in the dark had no effect on the frequency of closely opposed dimers for up to 16 h. These results indicate that closely opposed dimers in UV-irradiated yeast are subject to repair by enzymatic photoreactivation and/or by dark-repair processes dependent, at least in part, upon functions necessary for normal excision repair. The genetic and biochemical implications of these results are discussed.  相似文献   

4.
We have used a new assay for pyrimidine dimers to obtain evidence regarding the mechanism of post-replication repair of ultraviolet light-induced damage in excision-deficient (uvr) mutants of Escherichia coli. Our data indicate that dimers are gradually removed from the irradiated DNA under conditions permitting post-replication repair. Concomitantly, dimers appear in daughter strands synthesized after irradiation. The daughter strands initially contain gaps. During post-replication repair the gaps are filled and the originally discontinuous DNA is joined into long molecules resembling those observed in unirradiated control cells. Density transfer experiments reported by other investigators have provided evidence that the gap-filling involves exchanges between irradiated parental DNA and unirradiated daughter strands. The results of our experiments are in accord with this possibility and suggest that some dimers are included in the exchanged regions. Our data imply that intact, dimer-free DNA molecules are not necessarily generated by gap-filling and may not appear in uvr cells until several hours after u.v. irradiation. Instead, dimers may be gradually diluted among successive generations of DNA molecules synthesized after irradiation.  相似文献   

5.
Mutations to streptomycin resistance induced by ultraviolet light in Escherichia coli can lose their susceptibility to photoreversing light during excision repair and in the absence of chromosomal replication and protein synthesis, i.e., under conditions where SOS induction cannot occur. Using fusions of lac with sulA and umuC we have shown that after excision of UV damage in the presence of chloramphenicol there is a persisting, relatively stable signal capable of inducing SOS genes when protein sysnthesis is subsequently permitted. The persisting signal is formed roughly in proportion to the square of the UV dose and is about 30% photoreversible. It is suggested that the persisting SOS-inducing signal comprises a UV photoproduct (the target lesion) opposite a gap in the opposing DNA strand, and is formed by excision of one (the ancillary lesion) of a pair of closely opposed photoproducts. Calculations suggest that as few as two or three such configurations in a cell can lead to induction a sulA when protein synthesis is permitted. It is not clear whether these configurations can directly induce the SOS system because of their region of single-stranded DNA or whether the ultimate SOS-inducing signal is a more extensive single-stranded region formed when such configurations encounter a replication fork. Photoproduct/gap configurations have been previously suggested to be potentially mutagenic. UV-induced mutations to streptomycin resistance are mostly at A:T sites and are not photoreversible in fully SOS-induced bacteria in the absence of excision repair, indicating that they are not targeted at cyclobutane-type pyrimidine dimers. In SOS-induced excision-proficient bacteria there is about 39% photoreversibility which is rapidly lost after UV. This photoreversibility is attributed to many ancillary lesions being cyclobutane-type pyrimidine dimers which are excised leading to the exposure of target lesions on the opposing strand which, at these particular sites, are mostly non-photoreversible photoproducts.  相似文献   

6.
DNA Repair in Potorous tridactylus   总被引:4,自引:0,他引:4       下载免费PDF全文
The DNA synthesized shortly after ultraviolet (UV) irradiation of Potorous tridactylis (PtK) cells sediments more slowly in alkali than that made by nonirradiated cells. The size of the single-strand segments is approximately equal to the average distance between 1 or 2 cyclobutyl pyrimidine dimers in the parental DNA. These data support the notion that dimers are the photoproducts which interrupt normal DNA replication. Upon incubation of irradiated cells the small segments are enlarged to form high molecular weight DNA as in nonirradiated cells. DNA synthesized at long times (~ 24 h) after irradiation is made in segments approximately equal to those synthesized by nonirradiated cells, although only 10-15% of the dimers have been removed by excision repair. These data imply that dimers are not the lesions which initially interrupt normal DNA replication in irradiated cells. In an attempt to resolve these conflicting interpretations, PtK cells were exposed to photoreactivating light after irradiation and before pulse-labeling, since photoreactivation repair is specific for only one type of UV lesion. After 1 h of exposure ~ 35% of the pyrimidine dimers have been monomerized, and the reduction in the percentage of dimers correlates with an increased size for the DNA synthesized by irradiated cells. Therefore, we conclude that the dimers are the lesions which initially interrupt DNA replication in irradiated PtK cells. The monomerization of pyrimidine dimers correlates with a disappearance of repair endonuclease-sensitive sites, as measured in vivo immediately after 1 h of photoreactivation, indicating that some of the sites sensitive to the repair endonuclease (from Micrococcus luteus) are pyrimidine dimers. However, at 24 h after irradiation and 1 h of photoreactivation there are no endonuclease-sensitive sites, even though ~ 50% of the pyrimidine dimers remain in the DNA. These data indicate that not all pyrimidine dimers are accessible to the repair endonuclease. The observation that at long times after irradiation DNA is made in segments equal to those synthesized by nonirradiated cells although only a small percentage of the dimers have been removed suggests that an additional repair system alters dimers so that they no longer interrupt DNA replication.  相似文献   

7.
Mutations to streptomycin resistance induced by ultraviolet light in Escherichia coli can lose their susceptibility to photoreversing light during excision repair and in the absence of chromosomal replication and protein synthesis, i.e., under conditions where SOS induction cannot occur. Using fusions of lac with sulA and umuC we have shown that after excision of UV damage in the presence of chloramphenicol there is a persisting, relatively stable signal capable of inducing SOS genes when protein sysnthesis is subsequently permitted. The persisting signal is formed roughly in proportion to the square of the UV dose and is about 30% photoreversible. It is suggested that the persisting SOS-inducing signal comprises a UV photoproduct (the target lesion) opposite a gap in the opposing DNA strand, and is formed by excision of one (the ancillary lesion) of a pair of closely opposed photoproducts. Calculations suggest that as few as two or three such configurations in a cell can lead to induction a sulA when protein synthesis is permitted. It is not clear whether these configurations can directly induce the SOS system because of their region of single-stranded DNA or whether the ultimate SOS-inducing signal is a more extensive single-stranded region formed when such configurations encounter a replication fork. Photoproduct/gap configurations have been previously suggested to be potentially mutagenic. UV-induced mutations to streptomycin resistance are mostly at A:T sites and are not photoreversible in fully SOS-induced bacteria in the absence of excision repair, indicating that they are not targeted at cyclobutane-type pyrimidine dimers. In SOS-induced excision-proficient bacteria there is about 39% photoreversibility which is rapidly lost after UV. This photoreversibility is attributed to many ancillary lesions being cyclobutane-type pyrimidine dimers which are excised leading to the exposure of target lesions on the opposing strand which, at these particular sites, are mostly non-photoreversible photoproducts.  相似文献   

8.
Benzyl chloride (BC) and 4-chloromethylbiphenyl (4CMB) induce a class of alkaline-stable DNA damage in human cells which, like UV-induced pyrimidine dimers, undergoes repair at a slow rate by an excision-repair pathway which can be inhibited by cytosine arabinoside (araC). In the present study, in an attempt to clarify whether BC and 4CMB are UV-like agents, the excision-deficient xeroderma pigmentosum complementation group A fibroblasts and excision-proficient human alveolar tumour cells (A549) were exposed to various doses of these compounds prior to monitoring the inhibition of cell growth, DNA damage and DNA repair. The data indicate that such XP fibroblasts repair BC- and 4CMB-induced DNA damage at a normal rate, which suggests that the alkaline-stable DNA adducts induced by these chloromethyl compounds and the UV-induced pyrimidine dimers are processed by distinct excision-repair mechanisms in human cells.  相似文献   

9.
Summary Using the Micrococcus luteus dimer specific endonuclease assay of Wilkins (1973), and photoreactivation we have examined the induction and fate of ultraviolet induced pyrimidine dimers in the excision defective strain, uvs-2, of Neurospora crassa.Dimer induction was fluence dependent from 0 to 800 ergs/mm2 UV. An interdimer distance of 19.6x106 DNA molecular weight was found after a fluence of 220 ergs/mm2. We confirm the earlier report that this mutant is completely excision defective (Worthy and Epler 1972). Photoreactivation (PR), which greatly enhanced survival (by 10 fold after 440 ergs/mm2 UV), reduced significantly (40–44%) the number of UV-endonuclease sensitive sites found in irradiated DNA. This treatment also alleviated immediately some of the temporary blocks to high molecular weight DNA synthesis (elongation or ligation) seen in irradiated cells.We have also attempted to elucidate the mechanism of cellular postreplication repair used to overcome the UV inhibition to DNA synthesis. It was determined that during postreplication repair, Neurospora does not use recombination to bypass dimers and that single stranded DNA gaps opposite dimers do not appear to be present during the time when DNA being synthesized is made only in short pieces.  相似文献   

10.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

11.
Photoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers UV-induced dimers in these cells competing with the endogenous excision repair. In this paper we present the results of the injection of yeast PRE on (residual) UDS in fibroblasts from different excision-deficient XP-strains representing complementation groups A, C, D, E, F, H and I (all displaying more than 10% of the UDS of wild-type cells) and in fibroblasts from two excision-proficient XP-variant strains.In fibroblasts belonging to complementation groups C, F and I and in fibroblasts from the XP-variant strains UDS was significantly reduced, indicating that pyrimidine dimers in these cells are accessible to and can be monomerized by the injected yeast PRE. The UDS reduction in the XP-variant strains is comparable with the effect in wild-type cells. In cells from complementation groups C, F and I the reduction is less than in wild-type and XP-variant cells. Fibroblasts belonging to groups A, D, E and H did not show any reduction in UDS level after PRE injection and illumination with photoreactivating light. These result give evidence that the genetic repair defect in some XP-strains is probably due to an altered accessibility of the UV-damaged sites.  相似文献   

12.
In order to calculate the relative cytotoxicity and mutagenicity of (5-6) cyclobutane pyrimidine dimers and (6-4) photoproducts, we have measured survival and mutation induction in UV-irradiated excision-deficient E. coli uvrA cells, with or without complete photoreactivation of the (5-6) dimers. Radioimmunoassays with specificity for (5-6) dimers or (6-4) photoproducts have shown that maximum photoreactivation eliminates all of the (5-6) dimers produced up to 10 Jm-2 254-nm light, while it has no effect on (6-4) photoproducts. These results were confirmed by measuring the frequency of T4 endonuclease V-sensitive sites. Based on the best fit equations for survival and mutation induction, we have found that the calculated cytotoxicity of (6-4) photoproducts is similar to that of (5-6) dimers; however, the former is much more mutagenic than the latter.  相似文献   

13.
The role of the pyrimidine dimer in cell killing, DNA synthesis and repair has been studied by utilizing the light-requiring DNA-repair mechanism of photo- reactivation in UV-irradiated chicken-embryo fibroblasts. Survival, as measured by colony-forming ability at 41°C, is increased in cells left in the light. The initial inhibition of DNA synthesis by UV is much less in light-treated cells, and levels reach that of unirradiated controls much faster than when the cells are left in the dark. The number of endonuclease-sensitive sites (dimers)_measured by an assay with a crude extract from M. luteus, rapidly decreases as the cells are allowed to photoreactive. However, in the dark, significant amounts of repair also occur, but at a much lower rate and with a lag phase of several hours. Unscheduled DNA synthesis occurs to a similarly low extent in both dark- and light-treated cells, confirming the finding that some amount of excision repair occurs that is light-independent. When survival is examined as a function of the number of dimers present, the dimers, not the non-dimer products, appear to be responsible for cell killing. In this study, the removal of dimers in vivo by photoreactivation has made it possible to demonstrate directly that dimers are primarily responsible for the deleterious effects of UV on DNA synthesis and survival.  相似文献   

14.
Ultraviolet (UV) radiation-induced DNA damage leading to entomopathogenic fungal inactivation is commonly measured by viability counts. Here we report the first quantification of UV-induced cyclobutane pyrimidine dimers (CPD) in DNA of the entomopathogenic fungus, Beauveria bassiana. Changes in the mobility of UV-C irradiated DNA were resolved with CPD specific bacteriophage T4 endonuclease V and alkaline agarose gel electrophoresis. The maximum number of CPD formed in B. bassiana DNA in vitro by UV-C irradiation was 28 CPD/ 10 kb after 720 J/m2 dose. The maximum number of CPDs formed in B. bassiana conidiospore DNA irradiated in vivo was 15 CPD/10 kb after 480 J/m2 dose and was quantified from conidiospores that were incubated to allow photoreactivation and nucleotide excision repair. The conidiospores incubated for photoreactivation and nucleotide excision repair showed decreased number of CPD/10 kb DNA and a higher percent survival of conidiospore populations than conidiospores not allowed to repair.  相似文献   

15.
Unscheduled DNA synthesis induced by 254-nm UV radiation in chicken embryo fibroblasts was examined for 24 h following irradiation, while cells were kept in the dark. The effect on this repair process of a 2-4 h exposure to photoreactivating light immediately after UV was studied. Initial [3H]thymidine incorporation in the light-treated cells was only slightly different from that in cells not exposed to light, but a distinct difference in rate and cumulative amount of unscheduled DNA synthesis was seen several hours after irradiation. By varying the UV dose and the time allowed for photoreactivation, the amount of dimers (determined as sites sensitive to a M. luteus UV-endonuclease) and non-dimers could be changed. The results of these experiments suggest that excision repair of dimers, rather than non-dimer products, is responsible for the unscheduled DNA synthesis seen after UV irradiation.  相似文献   

16.
Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage.  相似文献   

17.
We investigated expression patterns of DNA repair genes such as the CPD photolyase, UV-DDB1, CSB, PCNA, RPA32 and FEN-1 genes by northern hybridization analysis and in situ hybridization using a higher plant, rice (Oryza sativa L. cv. Nipponbare). We found that all the genes tested were expressed in tissues rich in proliferating cells, but only CPD photolyase was expressed in non-proliferating tissue such as the mature leaves and elongation zone of root. The removal of DNA damage, cyclobutane pyrimidine dimers and (6–4) photoproducts, in both mature leaves and the root apical meristem (RAM) was observed after UV irradiation under light. In the dark, DNA damage in mature leaves was not repaired efficiently, but that in the RAM was removed rapidly. Using a rice 22K custom oligo DNA microarray, we compared global gene expression patterns in the shoot apical meristem (SAM) and mature leaves. Most of the excision repair genes were more strongly expressed in SAM. These results suggested that photoreactivation is the major DNA repair pathway for the major UV-induced damage in non-proliferating cells, while both photoreactivation and excision repair are active in proliferating cells.  相似文献   

18.
URT-43, which has a defect in excision repair, exhibits a temperature-dependent ultraviolet survival. It was shown that URT-43 requires protein synthesis but not DNA synthesis for recovery, by examining recovery in a growth medium containing chloramphenicol or nalidixic acid. The recovery of irradiated bacteriophage λ in URT-43 took place in a medium containing nalidixic acid at 30°, but not at 41°, and chloramphenicol prevented this recovery. These results seem to imply that the product of the mutated gene in URT-43 is labile. URT-43 was confirmed to have a temperature-sensitive mutation at the incision step of the excision repair mechanism by examining the nick formation of parental DNA in alkaline sucrose gradients. The release of pyrimidine dimers was reinvestigated directly by one- and two-dimensional paper-chromatography and indirectly by examining the distribution of DNA molecules synthesized after irradiation. Dimers were excised into the acid-soluble fraction when growing bacteria were incubated, but were not excised when in amino acid starved bacteria. These results suggest that URT-43 is a mutant slowly excising pyrimidine dimers because the product of a mutated gene concerned with the incision step of the excision repair mechanism is unstable.  相似文献   

19.
The rate of DNA synthesis was studied in normal cell strain and in strains from patients suffering from inherited disorder ataxia telangiectasia (AT). After exposure to reactively low doses of oxic X-rays (0–4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an “excision-deficient” and an “excision-proficient” strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad.These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis.  相似文献   

20.
We have examined the ability of normal fibroblasts and of excision-deficient xeroderma pigmentosum (XP) and XP variant fibroblasts to perform postreplication DNA repair after increasing doses of either ultraviolet (UV) irradiation or mutagenic benzo(a)pyrene derivatives. XP cells defective in the excision of both UV-induced pyrimidine dimers and guanine adducts induced by treatment with the 7,8-diol-9,10-epoxides of benzo(a)pyrene were partially defective in their ability to synthesize high molecular weight DNA after the induction of both classes of DNA lesions. This defect was more marked in XP variant cells, despite their ability to remove by excision repair both pyrimidine dimers and the diol epoxide-induced lesions to the same degree as observed in normal cells. The benzo(a)pyrene 9,10-oxide had no effect in any of the 3 cell lines. The response of the excision and postreplication DNA repair mechanisms operating in human fibroblasts treated with benzo(a)pyrene 7,8-diol-9,10-epoxides, therefore, appears to resemble closely that seen after the induction of pyrimidine dimers by UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号