首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamilton's theory of kin selection is one of the most important advances in evolutionary biology since Darwin. Central to the kin-selection theory is the concept of inclusive fitness. However, despite the importance of inclusive fitness in evolutionary theory, empirical estimation of inclusive fitness has remained an elusive task. Using the concept of individual fitness, I present a method for estimating inclusive fitness and its components for diploid organisms with age-structured life histories. The method presented here: (i) allows empirical estimation of inclusive fitness from life-history data; (ii) simultaneously considers all components of fitness, including timing and magnitude of reproduction; (iii) is consistent with Hamilton's definition of inclusive fitness; and (iv) adequately addresses shortcomings of existing methods of estimating inclusive fitness. I also demonstrate the application of this new method for testing Hamilton's rule.  相似文献   

2.
Hamilton's famous rule was presented in 1964 in a paper called "The genetical theory of social behaviour (I and II)", Journal of Theoretical Biology 7, 1-16, 17-32. The paper contains a mathematical genetical model from which the rule supposedly follows, but it does not provide a link between the paper's central result, which states that selection dynamics take the population to a state where mean inclusive fitness is maximized, and the rule, which states that selection will lead to maximization of individual inclusive fitness. This note provides a condition under which Hamilton's rule does follow from his central result.  相似文献   

3.
A recent model shows that altruism can evolve with limited migration and variable group sizes, and the authors claim that kin selection cannot provide a sufficient explanation of their results. It is demonstrated, using a recent reformulation of Hamilton's original arguments, that the model falls squarely within the scope of inclusive fitness theory, which furthermore shows how to calculate inclusive fitness and the relevant relatedness. A distinction is drawn between inclusive fitness, which is a method of analysing social behaviour; and kin selection, a process that operates through genetic similarity brought about by common ancestry, but not by assortation by genotype or by direct assessment of genetic similarity. The recent model is analysed, and it turns out that kin selection provides a sufficient explanation to considerable quantitative accuracy, contrary to the authors' claims. A parallel analysis is possible and would be illuminating for all models of social behaviour in which individuals' effects on each other's offspring numbers combine additively.  相似文献   

4.
Inclusive fitness and reciprocal altruism are widely thought to be distinct explanations for how altruism evolves. Here we show that they rely on the same underlying mechanism. We demonstrate this commonality by applying Hamilton's rule, normally associated with inclusive fitness, to two simple models of reciprocal altruism: one, an iterated prisoner's dilemma model with conditional behavior; the other, a mutualistic symbiosis model where two interacting species differ in conditional behaviors, fitness benefits, and costs. We employ Queller's generalization of Hamilton's rule because the traditional version of this rule does not apply when genotype and phenotype frequencies differ or when fitness effects are nonadditive, both of which are true in classic models of reciprocal altruism. Queller's equation is more general in that it applies to all situations covered by earlier versions of Hamilton's rule but also handles nonadditivity, conditional behavior, and lack of genetic similarity between altruists and recipients. Our results suggest changes to standard interpretations of Hamilton's rule that focus on kinship and indirect fitness. Despite being more than 20 years old, Queller's generalization of Hamilton's rule is not sufficiently appreciated, especially its implications for the unification of the theories of inclusive fitness and reciprocal altruism.  相似文献   

5.
A general version of inclusive fitness based on regression is rederived with minimal mathematics and directly from the verbal interpretation of its terms that motivated the original formulation of the inclusive fitness concept. This verbal interpretation is here extended to provide the two relationships required to determine the two coefficients and b. These coefficients retain their definition as expected effects on the fitness of an individual, respectively of a change in allelic state of this individual, and of correlated change in allelic state of social partners. The known least‐squares formulation of the relationships determining b and c can be immediately deduced and shown to be equivalent to this new formulation. These results make clear that criticisms of the mathematical tools (in particular least‐squares regression) previously used to derive this version of inclusive fitness are misdirected.  相似文献   

6.
A quantitative test of Hamilton's rule for the evolution of altruism   总被引:1,自引:0,他引:1  
The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb - c > 0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.  相似文献   

7.
Inclusive fitness is a concept widely utilized by social biologists as the quantity organisms appear designed to maximize. However, inclusive fitness theory has long been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we articulate a set of modeling assumptions that extend the range of scenarios in which inclusive fitness can be applied. We reanalyze recent formal analyses that searched for, but did not find, inclusive fitness maximization. We show (a) that previous models have not used Hamilton''s definition of inclusive fitness, (b) a reinterpretation of Hamilton''s definition that makes it usable in this context, and (c) that under the assumption of probabilistic mixing of phenotypes, inclusive fitness is indeed maximized in these models. We also show how to understand mathematically, and at an individual level, the definition of inclusive fitness, in an explicit population genetic model in which exact additivity is not assumed. We hope that in articulating these modeling assumptions and providing formal support for inclusive fitness maximization, we help bridge the gap between empiricists and theoreticians, which in some ways has been widening, demonstrating to mathematicians why biologists are content to use inclusive fitness, and offering one way to utilize inclusive fitness in general models of social behavior.  相似文献   

8.
Kin selection and frequency dependence: a game theoretic approach   总被引:1,自引:0,他引:1  
Game theory models show that the evolution of interactions between relatives is determined by two kinds of fitness effects: Hamilton's inclusive fitness effect, and a frequency-dependent synergistic effect. The latter arises when an individual's behaviour has different effects on the fitness of interactants, depending on whether or not they perform the same behaviour. Knowing the sign of the synergistic effect is sufficient to understand most of the qualitative features of genetic models that show departures from Hamilton's rule. Since this synergistic effect does not depend on the interactants being related, it is best viewed as something distinct from kin selection. In this view, Hamilton's rule is basically correct for describing kin selection, and most deviations from it are due to the distinct process of synergistic selection.  相似文献   

9.
For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as “inclusive fitness.” This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we adopt a resolution offered by Birch, who accepts the technical difficulties of establishing inclusive fitness maximization in a fully general model, while concluding that inclusive fitness is still useful as an organizing framework. We set out in more detail why inclusive fitness is such a practical and powerful framework, and provide verbal and conceptual arguments for why social biology would be more or less impossible without it. We aim to help mathematicians understand why social biologists are content to use inclusive fitness despite its theoretical weaknesses. Here, we also offer biologists practical advice for avoiding potential pitfalls.  相似文献   

10.
If individuals occupy habitats in a way that maximizes their fitness, if they are free to occupy the habitats they choose and if fitness declines with population density, then their abundance across habitats should follow an ideal free distribution. But, if individuals are genetically related, this simple fitness-maximization mechanism breaks down. Habitat occupation should obey Hamilton's rule (natural selection favours traits causing a loss in individual fitness as long as they result in an equal or greater gain in inclusive fitness) and depends more on inclusive fitness than it does on individual fitness. We demonstrate that the resulting inclusive-fitness distribution inflates the population density in habitats of poorer inherent quality, creating pronounced source sink dynamics. We also show that density-dependent habitat selection among relatives reinforces behaviours such as group defence and interspecific territoriality, and that it explains many anomalies in dispersal and foraging.  相似文献   

11.
Individual-as-maximizing agent analogies result in a simple understanding of the functioning of the biological world. Identifying the conditions under which individuals can be regarded as fitness maximizing agents is thus of considerable interest to biologists. Here, we compare different concepts of fitness maximization, and discuss within a single framework the relationship between Hamilton’s (J Theor Biol 7:1–16, 1964) model of social interactions, Grafen’s (J Evol Biol 20:1243–1254, 2007a) formal Darwinism project, and the idea of evolutionary stable strategies. We distinguish cases where phenotypic effects are additive separable or not, the latter not being covered by Grafen’s analysis. In both cases it is possible to define a maximand, in the form of an objective function ?(z), whose argument is the phenotype of an individual and whose derivative is proportional to Hamilton’s inclusive fitness effect. However, this maximand can be identified with the expression for fecundity or fitness only in the case of additive separable phenotypic effects, making individual-as-maximizing agent analogies unattractive (although formally correct) under general situations of social interactions. We also feel that there is an inconsistency in Grafen’s characterization of the solution of his maximization program by use of inclusive fitness arguments. His results are in conflict with those on evolutionary stable strategies obtained by applying inclusive fitness theory, and can be repaired only by changing the definition of the problem.  相似文献   

12.
13.
Genetic relatedness in viscous populations   总被引:10,自引:1,他引:9  
Summary Hamilton's inclusive fitness rule shows that the evolution of altruism is facilitated by high genetic relatedness of altruists to their beneficiaries. But the evolution of altruism is inhibited when the beneficiaries are also close competitors of the altruist, as will often be true in structured or viscous populations. However, Hamilton's rule still gives the correct condition for the evolution of altruism if relatedness is measured with respect to the local competitive neighbourhood.  相似文献   

14.
Inclusive fitness theory, summarised in Hamilton's rule, is a dominant explanation for the evolution of social behaviour. A parallel thread of evolutionary theory holds that selection between groups is also a candidate explanation for social evolution. The mathematical equivalence of these two approaches has long been known. Several recent papers, however, have objected that inclusive fitness theory is unable to deal with strong selection or with non-additive fitness effects, and concluded that the group selection framework is more general, or even that the two are not equivalent after all. Yet, these same problems have already been identified and resolved in the literature. Here, I survey these contemporary objections, and examine them in the light of current understanding of inclusive fitness theory.  相似文献   

15.
We use Hamilton's inclusive fitness method to calculate the evolutionarily stable dispersal rate in 1- and 2-dimensional stepping-stone populations. This extends previous results by introducing a positive probability for adults to survive into the next generation and breed again. Relatedness between nearby individuals generally decreases with increasing survival, decreasing competition with kin and favouring greater dispersal rates.  相似文献   

16.
An inclusive fitness analysis of altruism on a cyclical network   总被引:3,自引:0,他引:3  
A recent model studies the evolution of cooperation on a network, and concludes with a result connecting the benefits and costs of interactions and the number of neighbours. Here, an inclusive fitness analysis is conducted of the only case solved analytically, of a cycle, and the identical result is obtained. This brings the result within a biologically familiar framework. It is notable that the benefits and costs in the inclusive fitness framework need to be derived, and are not the benefits and costs that are the parameters in the original model. The relatedness is a quadratic function of position in a cycle of size N: an individual is related by 1 to itself, by (N - 5)/(N + 1) to an immediate neighbour, and by very close to -1/2 to the most distant individuals. The inclusive fitness analysis explains hitherto puzzling features of the results.  相似文献   

17.
Although the prisoner's dilemma (PD) has been used extensively to study reciprocal altruism, here we show that the n-player prisoner's dilemma (NPD) is also central to two other prominent theories of the evolution of altruism: inclusive fitness and multilevel selection. An NPD model captures the essential factors for the evolution of altruism directly in its parameters and integrates important aspects of these two theories such as Hamilton's rule, Simpson's paradox, and the Price covariance equation. The model also suggests a simple interpretation of the Price selection decomposition and an alternative decomposition that is symmetrical and complementary to it. In some situations this alternative shows the temporal changes in within- and between-group selection more clearly than the Price equation. In addition, we provide a new perspective on strong vs. weak altruism by identifying their different underlying game structures (based on absolute fitness) and showing how their evolutionary dynamics are nevertheless similar under selection (based on relative fitness). In contrast to conventional wisdom, the model shows that both strong and weak altruism can evolve in periodically formed random groups of non-conditional strategies if groups are multigenerational. An integrative approach based on the NPD helps unify different perspectives on the evolution of altruism.  相似文献   

18.
Hamilton's inclusive fitness theory provides a leading explanation for the problem of cooperation. A general result from inclusive fitness theory is that, except under restrictive conditions, cooperation should not be subject to frequency-dependent selection. However, several recent studies in microbial systems have demonstrated that the relative fitness of cheaters, which do not cooperate, is greater when cheaters are rarer. Here we demonstrate theoretically that such frequency-dependent selection can occur in microbes when there is (1) sufficient population structuring or (2) an association between the level of cooperation and total population growth. We test prediction (2) and its underlying assumption, using the pathogenic bacterium Pseudomonas aeruginosa, by competing strains that produce iron-scavenging siderophore molecules (cooperators) with nonproducers (cheaters) at various ratios, under conditions that minimize population structuring. We found that both the relative fitness of cheaters and the productivity of the mixed culture were significantly negatively related to initial cheater frequency. Furthermore, when the period of population growth was experimentally shortened, the strength of frequency dependence was reduced. More generally, we argue that frequency-dependent selection on cooperative traits may be more common in microbes than in metazoans because strong selection, structuring, and cooperation-dependent growth will be more common in microbial populations.  相似文献   

19.
According to Hamilton's theory of kin selection, species tend to evolve behavior such that each organism appears to be attempting to maximize its inclusive fitness. In particular, two neighbors are likely to help each other if the cost of doing so is less than the benefit multiplied by r, their coefficient of relatedness. Since the latter is less than unity, mutual altruism benefits both neighbors. However, is it theoretically possible that acting so as to maximize the inclusive, rather than personal, fitness may harm both parties. This may occur in strategic symmetric pairwise interactions (more specifically, nxn games), in which the outcome depends on both sides' actions. In this case, the equilibrium outcome may be less favorable to the interactants' personal fitness than if each of them acted so as to maximize the latter. This paper shows, however, that such negative effect of relatedness on fitness is incompatible with evolutionary stability. If the symmetric equilibrium strategies are evolutionarily stable, a higher coefficient of relatedness can only entail higher personal fitness for the two neighbors. This suggests that negative comparative statics as above are not likely to occur in nature.  相似文献   

20.
Cooperative breeders often exhibit reproductive skew, where dominant individuals reproduce more than subordinates. Two approaches derived from Hamilton's inclusive fitness model predict when subordinate behavior is favored over living solitarily. The assured fitness return (AFR) model predicts that subordinates help when they are highly likely to gain immediate indirect fitness. Transactional skew models predict dominants and subordinates "agree" on a level of reproductive skew that induces subordinates to join groups. We show the AFR model to be a special case of transactional skew models that assumes no direct reproduction by subordinates. We use data from 11 populations of four wasp species (Polistes, Liostenogaster) as a test of whether transactional frameworks suffice to predict when subordinate behavior should be observed in general and the specific level of skew observed in cooperative groups. The general prediction is supported; in 10 of 11 cases, transactional models correctly predict presence or absence of cooperation. In contrast, the specific prediction is not consistent with the data. Where cooperation occurs, the model accurately predicts highly biased reproductive skew between full sisters. However, the model also predicts that distantly related or unrelated females should cooperate with low skew. This prediction fails: cooperation with high skew is the observed norm. Neither the generalized transactional model nor the special-case AFR model can explain this significant feature of wasp sociobiology. Alternative, nontransactional hypotheses such as parental manipulation and kin recognition errors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号