首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Davidson IF  Li A  Blow JJ 《Molecular cell》2006,24(3):433-443
Correct regulation of the replication licensing system ensures that no DNA is rereplicated in a single cell cycle. When the licensing protein Cdt1 is overexpressed in G2 phase of the cell cycle, replication origins are relicensed and the DNA is rereplicated. At the same time, checkpoint pathways are activated that block further cell cycle progression. We have studied the consequence of deregulating the licensing system by adding recombinant Cdt1 to Xenopus egg extracts. We show that Cdt1 induces checkpoint activation and the appearance of small fragments of double-stranded DNA. DNA fragmentation and strong checkpoint activation are dependent on uncontrolled rereplication and do not occur after a single coordinated round of rereplication. The DNA fragments are composed exclusively of rereplicated DNA. The unusual characteristics of these fragments suggest that they result from head-to-tail collision (rear ending) of replication forks chasing one another along the same DNA template.  相似文献   

2.
Critical for genomic integrity, accurate DNA replication is tightly regulated by the convergence of prereplication protein complexes (pre-RCs) to “license” replicating origins on DNA in G1 and is activated by S-phase promoting kinases that selectively target and trigger origin firing in S-phase. To present, a checkpoint mechanism monitoring pre-RC complex formation and activation has yet to be elucidated. However, perturbation of these protein complexes has yielded divergent phenotypes in recent reports: normal cells arrest in the cell cycle, whereas cancerous cells arrest and die. These data implicate a mechanism by which normal cells sense pre-RC deficiency and then signal for cell cycle arrest. The potential for therapeutic exploits of this disparity between normal and cancer cells is apparent. Here, we explore recent data supporting the existence of a pre-RC checkpoint that ensures faithful pre-RC formation, a cell cycle mechanism that is intriguingly compromised in cancer cells.  相似文献   

3.
The regulatory mechanism which ensures that eukaryotic chromosomes replicate precisely once per cell cycle is a basic and essential cellular property of eukaryotes. This fundamental aspect of DNA replication is still poorly understood, but recent advances encourage the view that we may soon have a clearer picture of how this regulation is achieved. This review will discuss in particular the role of proteins in the minichromosome maintenance (MCM) family, which may hold the key to understanding how DNA is replicated once, and only once, per cell cycle.  相似文献   

4.
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.  相似文献   

5.
Orthodox Type IIP restriction endonucleases, which are commonly used in molecular biological work, recognize a single palindromic DNA recognition sequence and cleave within or near this sequence. Several new studies have reported on structural and biochemical peculiarities of restriction endonucleases that differ from the orthodox in that they require two copies of a particular DNA recognition sequence to cleave the DNA. These two sites requiring restriction endonucleases belong to different subtypes of Type II restriction endonucleases, namely Types IIE, IIF and IIS. We compare enzymes of these three types with regard to their DNA recognition and cleavage properties. The simultaneous recognition of two identical DNA sites by these restriction endonucleases ensures that single unmethylated recognition sites do not lead to chromosomal DNA cleavage, and might reflect evolutionary connections to other DNA processing proteins that specifically function with two sites.  相似文献   

6.
Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.  相似文献   

7.
Short DNA regions, known to contain replication origins, were isolated from 2 M NaCl resistant nuclear structures of Physarum polycephalum after predigestion with DNase. Regions of 100 bp average length were cloned and sequenced. About 25% of the clones contained direct repeats of 12 to 16 bp and variable base sequences, that have been shown to possess the potential of playing a crucial role in the control of DNA replication. In one of the two alternative three-dimensional configurations such repeats expose single-stranded loops that can function as sites for the initiation of new DNA strands. As these regions are converted into full-length duplexes by their own replication, reinitiaton at the same site is excluded. Restoration of the initiable configuration is considered to be coupled to structural rearrangements involved in the transient condensation of chromosomes in mitosis. This mechanisms ensures that any part of the entire eukaryotic genome is reproduced just a single time during one cell cycle.  相似文献   

8.
The molecular mechanisms that regulate cell cycle progression in a developmental context are poorly understood. Here, we show that the leucine-rich repeat protein LRR-1 promotes cell cycle progression during C. elegans development, both in the germ line and in the early embryo. Our results indicate that LRR-1 acts as a nuclear substrate-recognition subunit of a Cullin 2-RING E3 ligase complex (CRL2(LRR-1)), which ensures DNA replication integrity. LRR-1 contains a typical BC/Cul-2 box and binds CRL2 components in vitro and in vivo in a BC/Cul-2 box-dependent manner. Loss of lrr-1 function causes cell cycle arrest in the mitotic region of the germ line, resulting in sterility due to the depletion of germ cells. Inactivation of the DNA replication checkpoint signaling components ATL-1 and CHK-1 suppresses this cell cycle arrest and, remarkably, restores lrr-1 mutant fertility. Likewise, in the early embryo, loss of lrr-1 function induces CHK-1 phosphorylation and a severe cell cycle delay in P lineage division, causing embryonic lethality. Checkpoint activation is not constitutive in lrr-1 mutants but is induced by DNA damage, which may arise due to re-replication of some regions of the genome as evidenced by the accumulation of single-stranded DNA-replication protein A (ssDNA-RPA-1) nuclear foci and the increase in germ cell ploidy in lrr-1 and lrr-1; atl-1 double mutants, respectively. Collectively, these observations highlight a crucial function of the CRL2(LRR-1) complex in genome stability via maintenance of DNA replication integrity during C. elegans development.  相似文献   

9.
A DNA replication program, which ensures that the genome is accurately and wholly replicated, is established during G1, before the onset of S phase. In G1, replication origins are licensed, and upon S phase entry, a subset of these will form active replisomes. Tight regulation of the number of active replisomes is crucial to prevent replication stress-induced DNA damage. TICRR/TRESLIN is essential for DNA replication initiation, and the level of TICRR and its phosphorylation determine the number of origins that initiate during S phase. However, the mechanisms regulating TICRR protein levels are unknown. Therefore, we set out to define the TICRR/TRESLIN protein dynamics throughout the cell cycle. Here, we show that TICRR levels are high during G1 and dramatically decrease as cells enter S phase and begin DNA replication. We show that degradation of TICRR occurs specifically during S phase and depends on ubiquitin ligases and proteasomal degradation. Using two targeted siRNA screens, we identify CRL4DTL as a cullin complex necessary for TICRR degradation. We propose that this mechanism moderates the level of TICRR protein available for replication initiation, ensuring the proper number of active origins as cells progress through S phase.  相似文献   

10.
11.
The cell-division cycle has to be regulated in both time and space. In the time dimension, the cell ensures that mitosis does not begin until DNA replication is completed and any damaged DNA is repaired, and that DNA replication normally follows mitosis. This is achieved by the synthesis and destruction of specific cell-cycle regulators at the right time in the cell cycle. In the spatial dimension, the cell coordinates dramatic reorganizations of the subcellular architecture at the entrance to and exit from mitosis, largely through the actions of protein kinases and phosphatases that are often localized to specific subcellular structures. Evidence is now accumulating to suggest that the spatial organization of cell-cycle regulators is also important in the temporal control of the cell cycle. Here I will focus on how the locations of the main components of the cell-cycle machinery are regulated as part of the mechanism by which the cell controls when and how it replicates and divides.  相似文献   

12.
Regulating mammalian checkpoints through Cdc25 inactivation   总被引:11,自引:0,他引:11       下载免费PDF全文
Precise monitoring of DNA replication and chromosome segregation ensures that there is accurate transmission of genetic information from a cell to its daughters. Eukaryotic cells have developed a complex network of checkpoint pathways that sense DNA lesions and defects in chromosome segregation, spindle assembly and the centrosome cycle, leading to an inhibition of cell-cycle progression for the time required to remove the defect and thus preventing genomic instability. The activation of checkpoints that are responsive to DNA damage or incomplete DNA replication ultimately results in the inhibition of cyclin-dependent kinases. This review focuses on our understanding of the biochemical mechanisms that specifically inactivate Cdc25 (cell division cycle 25) phosphatases to achieve this. The evidence for links between checkpoint deregulation and oncogenesis is discussed.  相似文献   

13.
Sister chromatid cohesion is essential for the maintenance of genome integrity. Errors in regulation of cohesion result in increased sensitivity to DNA damage, mis-segregation of chromosomes, and loss of genetic information. We recently showed that sororin is an essential regulator of sister chromatid cohesion in vertebrates. Interestingly, we identified sororin in a screen for proteins whose levels are controlled by the Anaphase Promoting Complex (APC), a cell cycle –regulated ubiquitin ligase. Ubiquitination by the APC and the resulting degradation ensure that sororin levels are low throughout G1 and only rise during S phase. We speculate that this regulation is an essential part of the mechanism that ensures that cohesion is established only after there are in fact two sister chromatids to tie together. Cohesion thus established can then be used both to mediate recombinational DNA repair, as well as to ensure accurate sister chromatid segregation in anaphase. Both of these roles are essential to genome stability.  相似文献   

14.
15.
Tsvetkov L 《IUBMB life》2004,56(8):449-456
The cell cycle controls processes of DNA replication and segregation of replicated DNA into two daughter cells. These processes are coordinated by multiple signaling pathways, which employ many protein kinases. The members of the family of Polo-like protein kinases are among these key cell cycle regulators. In response to DNA damage and inhibited DNA replication, DNA structure checkpoints delay cell cycle progression to provide cells with time for repair of damaged DNA and protect it from more severe damage. These effects are achieved by affecting key players of the basic cell cycle regulation of the cells with damaged DNA. This review is focused on the interplay between Chk2, a bona fide checkpoint protein kinase, and Polo-like kinases.  相似文献   

16.
George CM  Lyndaker AM  Alani E 《DNA Repair》2011,10(11):1086-1094
In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9-dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences.  相似文献   

17.
ATM、ATR和DNA损伤介导的细胞周期阻滞   总被引:9,自引:0,他引:9  
朱虹  缪泽鸿  丁健 《生命科学》2007,19(2):139-148
ATM和ATR属于PIKK家族,是DNA损伤检查点的主要成员。它们被不同类型的DNA损伤所激活,通过磷酸化相应的下游蛋白Chk1和Chk2等,调节细胞周期各个检查点,引起细胞周期阻滞,使DNA损伤得以修复。ATM和ATR在维持基因组的稳定性中起到至关重要的作用。本文着重综述有关ATM和ATR在DNA损伤介导的细胞周期阻滞中发挥的作用以及相互关系的最新研究进展。  相似文献   

18.
19.
The G2 DNA damage checkpoint ensures maintenance of cell viability by delaying progression into mitosis in cells which have suffered genomic damage. It is controlled by a number of proteins which are hypothesized to transduce signals through cell cycle regulators to delay activation of p34cdc2. Studies in mammalian cells have correlated induction of inhibitory tyrosine 15 (Y15) phosphorylation on p34cdc2 with the response to DNA damage. However, genetic studies in fission yeast have suggested that the major Y15 kinase, p107wee1, is not required for the cell cycle delay in response to DNA damage, although it is required for survival after irradiation. Thus, the target of the checkpoint, and hence the mechanism of cell cycle delay, remains unknown. We show here that Y15 phosphorylation is maintained in checkpoint-arrested fission yeast cells. Further, wee1 is required for cell cycle arrest induced by up-regulation of an essential component of this checkpoint, chk1. We observed that p107wee1 is hyperphosphorylated in cells delayed by chk1 overexpression or UV irradiation, and that p56chk1 can phosphorylate p107wee1 directly in vitro. These observations suggest that in response to DNA damage p107wee1 is phosphorylated by p56chk1 in vivo, and this results in maintenance of Y15 phosphorylation and hence G2 delay. In the absence of wee1, other Y15 kinases, such as p66mik1, may partially substitute for p107wee1 to induce cell cycle delay, but this wee1-independent delay is insufficient to maintain full viability. This study establishes a link between a G2 DNA damage checkpoint function and a core cell cycle regulator.  相似文献   

20.
DNA array technology has made remarkable progress in recent years and has become an indispensable tool in molecular biology research. However, preparing high-quality custom-made DNA arrays at a reasonable cost is still an important concern because we cannot abandon the use of DNA array systems designed for specific purposes. To address these problems, we here report the use of rolling circle amplification products of cDNA plasmids dissolved in 80% formamide as DNA probes immobilized on a nylon membrane. First, because formamide is practically non-volatile under ambient conditions and nucleic acids are easily dissolved in it, the use of formamide as a DNA solvent ensures that the DNA concentration of the solution will not change during arraying, which often takes several hours to a day depending on the number of DNA spots and arrays to produce. Secondly, the use of rolling circle amplification technology greatly reduced the labor needed to prepare the spotted DNA. The results in this study demonstrate that the introduction of these two modifications in preparation of nylon DNA array greatly improved its quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号