首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effects of different photoperiods on the concentrations of plasma androgens, testes weight and on the diurnal rhythm of plasma testosterone (T), dihydrotestosterone (DHT) and androstenedione (A) in mature, single comb White Leghorn male chickens were studied. 2. Birds were exposed to either 14 hr of light (lights on at 0600-2000 hr) or to 24 hr of light per day. 3. Blood samples were collected from birds in both groups at 3-hr intervals and plasma levels of T, DHT and A were measured using radioimmunoassays. Following blood collection, birds were weighed, killed and testis weights were recorded. 4. Under 14 hr of light, there was a diurnal rhythm of T and DHT with hormone concentrations peaking at the end of the dark period. There was no obvious rhythm for A. Exposure to 24 hr of light abolished the diurnal rhythm found under 14 hr of light. 5. There was an increase not only in testis weights but also in body weight and hormone concentrations under 24 hr of light. 6. It was concluded that photoperiod plays an important role in controlling the concentration and rhythm of androgens in mature male chickens.  相似文献   

2.
Pharbitis nil, strain Violet, subjected to various photoperiods(24-hr cycle at 24?C) bloomed about 10 hr after light-off whenthe light period was 10 hr or longer, and about 20 hr afterlight-on when the light period was shorter. The higher the temperature(20–30?C) during the dark period, the later the time offlower-opening, with the temperature during the last half ofthe dark period having a stronger effect than that during thefirst half. In continuous dark or light, flower buds of Pharbitis openedabout every 24 hr at all temperatures tested between 20 and28?C, which suggests the participation of a circadian rhythmin determining the time of flower-opening. A light pulse given6–12 or 28–36 hr after the onset of the dark periodgreatly advanced the phase of this rhythm (8–10 hr). Phasedelay of this rhythm could not be obtained by light pulses givenat any time. (Received September 29, 1979; )  相似文献   

3.
Activity of total lactate dehydrogenase (LDH) and of the isozyme X (LDH X or C4) have been determined at 2 hr intervals during 24 hr cycles in testis of adult rats maintained since birth in a photoperiod of 14 hr light: 10 hr dark. LDH X activity of epididymal sections (caput, corpus and cauda) from the same animals was also determined. Total LDH and LDH X activities in testis exhibited circadian rhythms with different timing. LDH X in the three portions of epididymis showed diurnal variations similar to those in testis. Rats subjected to constant light or constant dark presented marked modifications of LDH X profiles, indicating that the photoperiod plays a synchronizer role. While total soluble proteins did not show variations in testis of rats exposed to the photoperiod, a circadian rhythm was demonstrated in animals maintained in constant light or dark.  相似文献   

4.
Circadian rhythm of tryptophan hydroxylase activity in chicken retina   总被引:2,自引:0,他引:2  
1. Retinal tryptophan hydroxylase activity in chickens (1-4 weeks old and embryos) was estimated by determination of levels of 5-hydroxytryptophan (5HTP) in retinas at defined intervals after inhibition of aromatic L-amino acid decarboxylase with m-hydroxybenzylhydrazine (NSD1015). 2. The relationship of tryptophan hydroxylase activity to photoperiod was explored. In chickens maintained on a 12-hr light: 12-hr dark cycle, a diurnal cycle in tryptophan hydroxylase activity was observed. Activity during middark phase was 4.4 times that seen in midlight phase. Cyclic changes in tryptophan hydroxylase activity persisted in constant darkness with a period of approximately 1 day, indicating regulation of the enzyme by a circadian oscillator. The phase of the tryptophan hydroxylase rhythm was found to be determined by the phase of the light/dark cycle. The relationship of the tryptophan hydroxylase rhythm to the light/dark cycle mirrors previously described rhythms of melatonin synthesis and serotonin N-acetyltransferase (NAT) activity in the retina. 3. Light exposure for 1 hr during dark phase suppressed NAT activity by 82%, while tryptophan hydroxylase activity was suppressed by only 30%. 4. Based on the differential responses of retinal NAT activity and tryptophan hydroxylase activity to acute light exposure during dark phase, it was predicted that exposure to light during dark phase would divert serotonin in the retina from melatonin biosynthesis to oxidation by MAO. In support of this, levels of 5-hydroxyindole acetic acid (5HIAA) in retina were found to be elevated approximately two-fold in chickens exposed to 30 min of light during dark phase. In pargyline-treated chickens, 2 hr of light exposure during dark phase was found to increase retinal serotonin levels by 64% over pargyline-treated controls. 5. Cyclic changes in tryptophan hydroxylase activity and NAT activity persisted for 2-3 days in constant light. Tryptophan hydroxylase activity at mid-night gradually decreased on successive days in constant light; on the first day of constant light, tryptophan hydroxylase activity at mid-night was 70% of activity seen during middark phase of the normal light/dark cycle and decreased further on subsequent days. In contrast, on each of 3 days of constant light, NAT activity at mid-night was approximately 15% of normal middark phase activity. 6. Cycloheximide completely inhibited the nocturnal increase in tryptophan hydroxylase activity when given immediately before light offset. The nocturnal increase in NAT activity was inhibited in a similar fashion. 7. Like the development of the NAT rhythm, cyclic changes of tryptophan hydroxylase activity in the retinas of chickens began on or immediately before the day of hatching. hatching.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Development of diurnal rhythm in some metabolic parameters in foals   总被引:1,自引:0,他引:1  
1. The development of diurnal rhythm activity of FDPA, AspAT and A1AT and in levels of cortisol, T3 and T4 was observed in the blood serum of six foals. 2. The studies began when a foal was 7 days old and were repeated every month until foals reached 1 year of age. Blood samples were taken every 4 hr for one day each month. 3. As a control group four barren mares were used, kept and examined in the same conditions. 4. In mature mares, diurnal rhythms in activity of A1AT (acrophase at 2200 hr), AspAt (2400 hr) and cortisol (0630 hr) but in T3 only in summer months (acrophase at 0100 hr) were observed. 5. During the first 6 months of foal life, significantly higher mean levels of FDPA, A1AT, T3 and T4 than in control mares were found. 6. The cortisol level in foals was half as much as that of mature mares throughout the year. 7. In foals the diurnal rhythm in A1AT activity occurred in the 5th month and in AspAt--in the 12th month (acrophase at 2400 hr), but in cortisol levels it was developed already in the second month of foal life (acrophase at 0830 hr).  相似文献   

6.
Effects of 15 min light pulses given at various intervals (every 1, 2, 4, 6, 8 and 12 hr) under constant darkness on the locomotor rhythm were investigated in the adult male cricket, Gryllus bimaculatus. A single pulse per 24 hr induced period modulation in a circadian phase dependent manner, yielding a period modulation curve (PMC): the 15 min light pulse lengthened the period in the early subjective night (CT11-16) and shortened it during the late subjective night to the early subjective day (CT20-5). Frequent light pulses modulated the freerunning period of the rhythm dependent on the interval of the pulses: when compared with the freerunning period in DD (23.74 +/- 0.03 hr) the period was significantly shorter in intervals of 2 and 4 hr, but lengthened when the interval was 1 and 12 hr. Frequent light pulses also resulted in entrainment of the rhythm to run with the period of 24 hr and the ratio of the entrained animals varied from 12% to 72% depending on the interval of the light pulses. The period modulation and the entrainment by the repetitive light pulses could be interpreted according to the PMC. In about 15% of animals, the light pulses induced a rhythm dissociation, suggesting that the bilaterally paired circadian pacemakers have their own sensitivity to the entraining photic information. The light pulse caused a masking effect, i.e., an intense burst of activity. The magnitude of the light induced responses was dependent on the circadian phase. The strongest masking effect was observed in the subjective night. The phase of the prominent period modulation and of the marked masking effects well coincides with the previously reported sensitive phase of the photoreceptive system.  相似文献   

7.
The influence of length of light:dark cycle on motor activity, food intake and growth has been investigated in young pigs subject to either 12 hr light:12 hr dark, or 9 hr light:9 hr dark. Motor activity was positively correlated with the light phase in both groups. No differences were found in growth rate or in the average amount of food eaten in a 72 hr period between the two treatments. Body conformation and composition were also similar. Thus, unlike many other mammals the young pig can synchronize its activity to a non-circadian rhythm. Moreover, this does not affect growth.  相似文献   

8.
Circadian variations in acute and subacute neurobehavioural effects of trichloroethylene (TRI: 1.2 g/kg i.p.) were investigated in the rat under a light: dark = 12:12 hr cycle. An acute effect of TRI evaluated by decreased muscle tone was maximal during the early dark phase (21:00). A subacute effect of TRI was evaluated by a continuous recording of spontaneous locomotor activity in the rat. The circadian rhythm in spontaneous locomotor activity was extensively impaired by the injection of TRI for three consecutive days. Spectral analysis of spontaneous locomotor activity showed that ultradian periods became more dominant than the circadian period, and the 1//fluctuation of the spectrum disappeared after the injection of TRI. The effect of TRI on the circadian rhythm in spontaneous locomotor activity was circadian-phase dependent, and the treatment of TRI at 09:00 provoked greater circadian rhythm impairment than that at 21:00. The mechanisms of the time-dependent effect of TRI on neurobehaviour are the subject of further investigation.  相似文献   

9.
Circadian variations in acute and subacute neurobehavioural effects of trichloroethylene (TRI: 1.2 g/kg i.p.) were investigated in the rat under a light: dark = 12:12 hr cycle. An acute effect of TRI evaluated by decreased muscle tone was maximal during the early dark phase (21:00). A subacute effect of TRI was evaluated by a continuous recording of spontaneous locomotor activity in the rat. The circadian rhythm in spontaneous locomotor activity was extensively impaired by the injection of TRI for three consecutive days. Spectral analysis of spontaneous locomotor activity showed that ultradian periods became more dominant than the circadian period, and the 1//fluctuation of the spectrum disappeared after the injection of TRI. The effect of TRI on the circadian rhythm in spontaneous locomotor activity was circadian-phase dependent, and the treatment of TRI at 09:00 provoked greater circadian rhythm impairment than that at 21:00. The mechanisms of the time-dependent effect of TRI on neurobehaviour are the subject of further investigation.  相似文献   

10.
Roots of sunflower plants (Helianthus annuus L. var. Mammoth Russian) subjected to L12:D12, L18:D6, and L12:D12 followed by continuous light all display rhythms of about 12 hours for glutamine synthetase (GS) activity (transferase reaction) with one peak in the `light phase' and one in the `dark phase.' Root energy charge (EC = ATP+½ADP/ATP+ADP+AMP) is directly correlated with GS, but the GS rhythm is better explained as the result of a rhythmic adenine nucleotide ratio (ATP/ADP+AMP) that regulates enzyme activity through allosteric modification. When L12:D12 plants are subjected to free-running conditions in continuous darkness, only diurnal rhythms for GS and EC, with peaks in the dark phase, remain. The 12-hour root rhythms for GS and EC appear to be composed of two alternating rhythms, one a diurnal, light-dependent, incompletely circadian light phase rhythm and the other a light-independent, circadian dark phase rhythm.

Only glutamine, of the root amino acids, displays cyclical changes in concentration, maintaining under all conditions a 12-hour rhythm that is consistently synchronized with, but nearly always inversely correlated with, GS and EC rhythms.

  相似文献   

11.
Bryophyllum diagremontianum plants grown under light-dark regimeswere exposed to one more cycle of the regime or to continuousdarkness for 24 hr. Photosynthetic O2 evolution by leaf segmentsfrom these plants was investigated in the presence of 15 mMNaHCO3 (CO2-dependent O2 evolution) or in the absence of CO2(malate-dependent O2 evolution). The malate-dependent O2 evolutionserved as an index of the activity of malate decarboxylation.Malate content was respectively 67, 64 and 85 µmoles/g.fwin leaves measured at 7 hr 30 min in light and 6 hr 26 min inthe dark from plants under the light-dark regime (light 12 hr/dark12 hr) and those measured at 6 hr 26 min in the dark from plantsunder the continuous dark regime. The malate- and CO2-dependentphotosynthetic O2 evolutions in the same leaves were 9.7 and22, 0.2 and 17, and 16 and 26 µmoles/g.fw.hr, respectively.Thus, the diurnal change in capacity for malate-dependent O2evolution was relieved by continuous dark treatment. These results suggest that the diurnal change in malate decarboxylationin this crassulacean acid metabolism plant does not occur byan endogenous rhythm. This further indicates lack of an endogenousrhythm for the influx-efflux of malate across the vacuole andin malate decarboxylation enzyme activity. (Received August 1, 1979; )  相似文献   

12.
Abstract

The effect of two antidepressant drugs (+)‐ and (‐)‐oxaprotiline hydrochloride (Ciba‐Geigy, OXA) on the exploration and the basal activity of rats in the light and dark phases of the diurnal cycle was investigated. (+)‐OXA is a selective noradrenaline (NA) uptake inhibitor, while its (‐)‐enantiomer is devoid of such an activity. Male Wistar rats housed individually on a 12:12 h light‐dark schedule (light on: 07.00 h) were treated with (+)‐ or (‐)‐OXA in a dose of 10 mg/kg twice daily, for 14 days. The rats received the last dose at the beginning of the light or dark phase and their movements were registered using Animex actometers for 12 h. The first 30 min of activity was regarded as the exploratory and the further period as the basal activity. In the light phase both (+)‐ and (‐)‐OXA decreased the exploration (80% and 70% of control, resp., p < 0.05) and potentiated it (180% and 190% of control, resp., p < 0.01) in the dark phase. The effect on the ultradian rhythm of the basal activity was phase‐dependent also. (+)‐OXA prolonged the period and did not change mesor, amplitude or acrophase of the rhythm in the light phase, and diminished mesor and amplitude, shifted acrophase and did not change period in the dark phase. (‐)‐OXA did not change parameters of the rhythm in the light phase and shortened period, diminished mesor and shifted acrophase of the rhythm in the dark phase. The results show that both (+)‐ and (‐)‐OXA given in the same dose change the same activity in opposite ways in the light and dark phases of the diurnal cycle. The NA uptake inhibition seems not to be a requisite of the light/dark phase differences.  相似文献   

13.
14.
Effects of temperature cycle (25 degrees C during light and 10 degrees C during dark) on circadian locomotor activity rhythm entrained by 12 hr light-12 hr dark cycle were studied in the dark active Djungarian hamster. The amounts of activity per 24 hr were significantly greater under temperature cycle than under constant temperature of 25 degrees C. Phase angle difference between activity onset and light off was always more positive under temperature cycle than under constant temperature. These findings are discussed in terms of circadian physiology.  相似文献   

15.
The locomotor activity rhythms were examined by using an actograph with infra-red photo-electric switches for two species of wrasses, (Halichoeres tenuispinnis andPteragogus flagellifera) under various light conditions. InH. tenuispinnis, the locomotor activity of almost all fish under light-dark cycle regimen (LD12:12; 06:00–18:00 light, 18:00–06:00 dark) commenced somewhat earlier than the beginning of light period and continued till somewhat earlier than the beginning of the dark period. This species clearly showed free-running activity rhythms under both constant illumination (LL) and constant darkness (DD). Therefore,H. tenuispinnis appeared to have a circadian rhythm. The length of the circadian period ranged from 23 hr. 30 min. to 23 hr. 44 min. under LL, and was from 23 hr. 39 min. to 24 hr. 18 min. under DD. On the other hand, the locomotor activity ofP. flagellifera occurred mostly in the light period under LD 12:12. The activity of this species continued through LL, but was greatly suppressed in DD, so that none of the fish had any activity rhythm in both constant conditions. It was known from field observations thatH. tenuispinnis burrowed and lay in sandy bottoms, whileP. flagellifera hid and rested in bases of seagrasses and shallow crevices of rocks during the night. In the present two wrasses, it seemed that the above-mentioned difference of noctural behavior was closely related to the intensity of the endogenous factor in the activity rhythm.  相似文献   

16.
A detailed analysis was made of the locomotor activity of Acheta domesticus under conditions of 12 hr light and 12 hr darkness (LD 12 : 12) and of continuous darkness (DD). Under LD 12 : 12 it was found that there are three types of insects: (1) those beginning the period of increased locomotor activity immediately after darkness falls, (2) considerably before this time, and (3) considerably after this time. Under DD conditions the greater amount of the insects have a free-running rhythm shorter than 24 hr, while only a small percentage have a rhythm of more than 24 hr.Destruction of the neurosecretory cells of the pars intercerebralis by means of radio waves leads to the formation of hyperactivity and loss of locomotor activity rhythm when more than half of these cells are destroyed.Injection of reserpine into the insect's haemolymph with doses of 10 μg/g of body weight results in a reduction in locomotor activity and produces arrhythmicity for 2 to 3 days under LD 12 : 12 conditions. Under DD conditions, however, this same dose results in a total and irretrievable loss of free-running rhythm. Histological studies of the brain of crickets following injection of reserpine show a large degree of accumulation of neurosecretion in the cells of the pars intercerebralis as compared with control insects.A hypothesis is put forward as to the way in which the brain centres regulating locomotor rhythm act in crickets.  相似文献   

17.
Experiments were conducted in male rats to study the effects of streptozotocin-induced diabetes on circadian rhythms of (a) plasma corticosterone concentrations; (b) motor activity; and (c) metabolic patterns. Animals were entrained to LD cycles of 12: 12 hr and fed ad libitum.

A daily rhythm of plasma corticosterone concentrations was found in controls animals with peak levels at 2400 hr and low values during the remaining hours. This rhythm was statistically confirmed by the cosinor method and had an amplitude of 3.37μg/100 ml and the acrophase at 100 hr. A loss of the normal circadian variation was observed in diabetic animals, with a nadir at the onset of light period and high values throughout the remaining hours; cosinor analysis of these data showed no circadian rhythm, delete and a higher mean level than controls.

As expected, normal rats presented most of their motor activity during the dark period with 80+ of total daily activity; the cosinor method demonstrated a circadian rhythm with an amplitude of 60+ of the mean level and the acrophase at 0852 hr. Both diabetic and control rats showed a similar activity during the light phase, but diabetic animals had less activity than controls during the night and their percentage of total daily activity was similar in both phases of the LD cycle (50+ for each one). With the cosinor method we were able to show the persistence of a circadian rhythm in the motor activity of diabetic rats, but with a mesor and amplitude lower than in controls (amplitude rested at 60+ of the mean level) and its acrophase advanced to 0148 hr.

The metabolic activity pattern of diabetic rats also changed: whereas controls showed a greater metabolic activity during the night (70+ food; 82+ water; 54+ urine; 67+ faeces), diabetics did not show differences between both phases of the LD cycle. Water ingested and urine excreted by the diabetic group were higher than normal during light and dark periods; food consumed and faeces excreted were higher than controls only in the light phase.

These data suggest that alterations in circadian rhythms of plasma corticosterone and motor activity are consecutive to the loss of the feeding circadian pattern, due to polyphagia and polydipsia showed by these animals, which need to extend intakes during the light and dark phases.  相似文献   

18.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is responsible for circadian rhythms in melatonin. The NAT activity rhythm has circadian properties such as persistence in constant conditions and precise control by light and dark. Experiments are reported in which chicks (Gallus domesticus), raised for 3 weeks in 12 h of light alternating with 12 h of dark (LD12:12), were exposed to 1-3 days of light-dark treatments during which NAT activity was measured in their pineal glands. (a) In LD12:12, NAT activity rose from less than 4.5 nmol/pineal gland/h during the light-time to 25-50 nmol/pineal gland/h in the dark-time. Constant light (LL) attenuated the amplitude of the NAT activity rhythm to 26-45% of the NAT activity cycle in LD12:12 during the first 24 h. (b) The timing of the increase in NAT activity was reset by the first full LD12:12 cycle following a 12-h phase shift of the LD12:12 cycle (a procedure that reversed the times of light and dark by imposition of either 24 h of light or dark). This result satisfies one of the criteria for NAT to be considered part of a circadian driving oscillator. (c) In less than 24-h cycles [2 h of light in alternation with 2 h of dark (LD2:2), 4 h of light in alternation with 4 h of dark (LD4:4), and 6 h of light in alternation with 6 h of dark (LD6:6)], NAT activity rose in the dark during the chicks' previously scheduled dark-time but not the previously scheduled light-time of LD12:12. In a cycle where 8 h of light alternated with 8 h of dark (LD8:8), NAT activity rose in both 8-h dark periods, even though the second one fell in the light-time of the prior LD12:12 schedule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We investigated the effect of prolonged acclimation to 12 hr of light and photo-schedule reversal during the time of photosensitivity in golden hamsters (Mesocricetus auratus). Before the experiments, animals were housed under natural photoperiod and then transferred to 12L:12D (light 12 hr:dark 12 hr) in autumn for 12 weeks. After 4 weeks of acclimation, photo-schedule was reversed (12D:12L). First experiments were done after 4 weeks of acclimation to an ambient temperature (T(a)) of 23 degrees C and a 12L:12D photo-schedule. We examined the daily variations in brown adipose tissue (BAT) capacity for nonshivering thermogenesis (NST). Noradrenaline (NA) injections were given every 4 hr while BAT temperature (T(BAT)) and preferred ambient temperature (PT(a)) were monitored continuously and simultaneously in a thermal gradient system. Then, we investigated the effect of light-dark cycle reversal on a daily rhythm of NST. The hamsters were acclimated to the photo-schedule reversed by 12 hr and the same T(a). After 4 and 8 weeks of acclimation to a reversed photo-schedule, the experiments were repeated. We found that the daily rhythm of the response to NA was entrained to the new light-dark cycle after 4 weeks of acclimation to a reversed photo-schedule. Maximum effect of NA was always recorded during the light phase and in the latter part of the dark phase of the day. NA-induced increase in T(BAT) was correlated with the decrease in PT(a), and was also inversely correlated with pre-injection T(BAT). These data imply that the daily rhythm of the capacity for NST opposes the daily rhythm of body temperature (T(b)). After 8 weeks of acclimation to the reversed photo-schedule, the rhythmicity of the response to NA disappeared, and the daily fluctuations in T(BAT) were the smallest. This lack of rhythm may be a physiological adaptation to winter conditions when the daily amplitude of T(b) rhythm is markedly reduced and, as a consequence, NST capacity does not vary within the day. Moreover, after 8 weeks of acclimation to reversed photo-schedule, NST capacity decreased while response to saline increased. During the experiments, hamsters were photosensitive and were changing to their winter status. However, because of the lack of cold during acclimation, the capacity for NST did not increase. Increased responsiveness to saline, indicating an increase in stress-induced thermogenesis, might be advantageous for "fight or flight" reaction.  相似文献   

20.
Bilateral optic stalk severance or lamina-medulla region removal were carried out in 47 adult male crickets Gryllus bimaculatus DeGeer. Effects of the operations on circadian locomotor activity were investigated under 12 h light: 12 h dark and at a constant temperature of 26°C. In the pre-operative days, 39 of the animals showed a typical nocturnal activity rhythm (normal rhythm), but the remaining 8 exhibited an atypical rhythm which is diurnal rather than nocturnal (abnormal rhythm). The operations eventually caused an arrhythmicity in all animals, suggesting that the crucial part of the central nervous system controlling the cricket circadian activity is located in the lamina-medulla region. However, in some of the post-operative crickets, the rhythm did not immediately disappear but persisted for a while: the diurnal increase of activity was observed up to 2 weeks in all 8 abnormal- and 4 normal-rhythm animals. In addition, 8 out of 39 normal-rhythm animals showed a single well-defined post-operative peak which occurred approximately in phase with the nocturnal peak prior to surgery. These results are discussed in relation to a possibility of involvement of the oscillatory structure outside the optic lobes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号