首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

2.
单克隆抗体S2C4对2型志贺毒素及其亚型毒性的中和作用   总被引:1,自引:0,他引:1  
纯化的2型志贺毒素(Shiga toxin 2,Stx2)经福尔马林脱毒后免疫BALB/c小鼠制备Stx2单克隆抗体,用体外中和试验对具有中和活性的阳性抗体克隆进行初筛,对所获得的中和抗体的重、轻链同种型及结合特异性进行鉴定,其中和保护作用通过体内、体外中和试验加以验证,最后,中和抗体对Stx2亚型Stx2c和Stx2vha的中和谱用体内中和试验验证.结果显示,12株抗Stx2的阳性抗体克隆中,只有1株具有中和活性,命名为S2C4,其重、轻链同种型为G1/κ,其靶分子为Stx2的A亚单位,与Stx2的B亚单位或Stx1不结合.在体外中和试验中S2C4可有效中和Stx2对Vero细胞的杀伤作用,同样,S2C4可中和致死量的Stx2及其亚型Stx2c和Stx2vha对小鼠的毒性作用.该抗体有望成为治疗产志贺毒素大肠杆菌感染的候选分子.  相似文献   

3.
Verotoxin (VT) or shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae is AB5 holotoxin with potent protein synthesis inhibitor. VT can induce both apoptosis and necrosis depending on the cell type, it has been shown that VT-induced apoptosis and cytotoxicity are distinct processes, and the A subunit can be necessary for apoptosis. In other words, the precise role of each subunit in apoptosis signaling has yet to be established. In this study, induction of apoptosis has been examined by using both recombinant A and B subunits, and recombinant Stx (rStx) with different doses in HeLa and Vero cells. For this purpose, the polymyxin B extract of constructs expressing A, B and AB5 recombinant proteins was used. Therefore, amounts greater than normally reported were used to induce desire effects on cell lines. The apoptotic effect of A and B subunits appear at higher doses than that of rStx. The highest apoptotic effect was observed for rStx at low concentration, compared to A and B subunits. A or B subunits separately cannot induce the signaling pathway stimulated by holotoxin though A subunit, does induce laddering pattern similar to holotoxin. We concluded that both subunits are important in complete death signaling pathway. Since different concentration of A and B subunits and rStx was required in different assay, therefore, it could be emphasized that cell death or even apoptosis caused by either of the subunits or holotoxin depends on sensitivity or specificity of the assay and cell types used.  相似文献   

4.
Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is associated with a broad spectrum of clinical manifestations that include diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Systemic Stx toxemia is considered to be central to the genesis of HUS. Distinct methods have been used to evaluate anti-Stx response for immunodiagnostic or epidemiological analysis of HUS cases. The development of enzyme-linked immunosorbent assay (ELISA) and western blot (WB) assay to detect the presence of specific antibodies to Stx has introduced important advantages for serodiagnosis of HUS. However, application of these methods for seroepidemiological studies in Argentina has been limited. The aim of this work was to develop an ELISA to detect antibodies against the B subunit of Stx2, and a WB to evaluate antibodies against both subunits of Stx2 and Stx1, in order to analyze the pertinence and effectiveness of these techniques in the Argentinean population. We studied 72 normal healthy children (NHC) and 105 HUS patients of the urban pediatric population from the surrounding area of Buenos Aires city. Using the WB method we detected 67% of plasma from NHC reactive for Stx2, but only 8% for Stx1. These results are in agreement with the broad circulation of Stx2-expressing STEC in Argentina and the endemic behavior of HUS in this country. Moreover, the simultaneous evaluation by the two methods allowed us to differentiate acute HUS patients from NHC with a great specificity and accuracy, in order to confirm the HUS etiology when pathogenic bacteria were not isolated from stools.  相似文献   

5.
The hemolytic uremic syndrome (HUS) associated with diarrhea is a complication of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB) was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC) has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF) and platelet/endothelial cell adhesion molecule 1 (PECAM-1). HGEC also expressed the globotriaosylceramide (Gb3) receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 −a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.  相似文献   

6.
Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.  相似文献   

7.
Shiga toxin variant type 2d (Stx2d) produced by some strains of Shiga toxin-producing Escherichia coli is composed of an enzymatically active A subunit and a B (binding) pentamer. The cytotoxicity of Stx2d is increased (activated) 10-1000-fold for Vero cells when the toxin is incubated with mucus obtained from the small intestine of mice. In this study we isolated an Stx2d activator and identified it as a mouse elastase with strong homology to human elastase IIIB. Moreover, commercially available porcine pancreatic elastase preparations also activated Stx2d cytotoxicity although with a lower specific activity than isolated mouse elastase. Elastase directly nicked the Stx2d A subunit to A(1) and A(2), an event that did not correlate with activation. However, elastase also reduced the size and changed the isoelectric point of the A(2) peptide, as determined by SDS-polyacrylamide gel electrophoresis and two-dimensional electrophoresis followed by Western immunoblot analysis. This elastase-mediated size and charge shift in the A(2) peptide of Stx2d occurred concurrently with activation of the toxin. Both the reduction in size of the Stx2d A(2) peptide by incubation with elastase as well as the associated activation of Stx2d cytotoxicity were fully inhibited by elastatinal, an elastase-specific inhibitor.  相似文献   

8.
Shiga toxin (Stx)-producing E.coli O157:H7 has become a global threat to public health; it is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure with thrombi occluding renal microcirculation. In this study, we explored whether Stx triggers complement-dependent microvascular thrombosis in in vitro and in vivo experimental settings of HUS. Stx induced on human microvascular endothelial cell surface the expression of P-selectin, which bound and activated C3 via the alternative pathway, leading to thrombus formation under flow. In the search for mechanisms linking complement activation and thrombosis, we found that exuberant complement activation in response to Stx generated an increased amount of C3a that caused further endothelial P-selectin expression, thrombomodulin (TM) loss, and thrombus formation. In a murine model of HUS obtained by coinjection of Stx2 and LPS and characterized by thrombocytopenia and renal dysfunction, upregulation of glomerular endothelial P-selectin was associated with C3 and fibrin(ogen) deposits, platelet clumps, and reduced TM expression. Treatment with anti-P-selectin Ab limited glomerular C3 accumulation. Factor B-deficient mice after Stx2/LPS exhibited less thrombocytopenia and were protected against glomerular abnormalities and renal function impairment, indicating the involvement of complement activation via the alternative pathway in the glomerular thrombotic process in HUS mice. The functional role of C3a was documented by data showing that glomerular fibrin(ogen), platelet clumps, and TM loss were markedly decreased in HUS mice receiving C3aR antagonist. These results identify Stx-induced complement activation, via P-selectin, as a key mechanism of C3a-dependent microvascular thrombosis in diarrhea-associated HUS.  相似文献   

9.
Shiga toxin (Stx)-producing Escherichia coli (STEC) is associated with hemolytic uremic syndrome (HUS). High inflammatory cytokine [interleukin (IL)-6 and IL-8] levels and low anti-inflammatory cytokine (IL-10) levels are indicators of a high risk for developing HUS in STEC-infected children. In this study, we investigated inhibitory action of telithromycin, a ketolide, against STEC and against Stx and lipopolysaccharide (LPS). Telithromycin inhibited in vitro STEC growth without inducing Stx phage, in marked contrast to norfloxacin. Stx markedly induced inflammatory (but not anti-inflammatory) cytokine production in human peripheral blood monocytes, while LPS induced both inflammatory and anti-inflammatory cytokine production. Telithromycin selectively inhibited the IL-6 and IL-8 production from Stx-stimulated (but not LPS-stimulated) monocytes. The drug did not significantly inhibit IL-10 production. Our data suggest that Stx plays a crucial role in the stimulation of inflammatory cytokines and such inflammatory response is inhibited by telithromycin, an anti-bacterial agent.  相似文献   

10.
A monoclonal antibody, 5-5B, which neutralizes Shiga toxin 1 (Stx1) cytotoxicity of Escherichia coli, was constructed. An epitope analysis indicated that Asn55 in Stx1 B subunit was an important residue. This result and our previous results using an anti-Stx2 monoclonal antibody indicate that the region around the cysteine residue of the disulfide bond might be important for the neutralization of Stx cytotoxicity, making it a potential vaccination candidate.  相似文献   

11.
12.
Escherichia coli clones expressing recombinant shiga toxin (Stx1) and its derivatives Stx1-A and Stx1-B subunits were established to release the proteins into periplasmic space. The expression was examined by SDS-PAGE to visualize the subunits. The secreted assembled subunits were extracted with polymyxin B and assessed for biological activity. The results showed that the presence of N-terminus leader sequence of the gene is essential for assembly of the subunits to yield biologically active holotoxin (AB5). The absence of the leader sequence did not affect the expression of the subunits but did disrupt the holotoxin assembly.  相似文献   

13.
Haemolytic uraemic syndrome (HUS), which is caused by Shiga toxin (Stx)-producing Escherichia coli, is the commonest cause of acute renal failure in childhood. It is widely believed that HUS develops following the release of Stx, an AB5 toxin that inhibits protein synthesis and has a direct toxic effect on the kidney endothelium. There remains, however, a mismatch between the current understanding of the pathogenesis of HUS and the evolution of the clinical signs of the disease. Our hypothesis is that Stx-mediated immune cell activation in the gut is the missing link in the pathogenesis of this condition, initiating the characteristic renal pathology of HUS either alone or in synergy with Stx. Validation of this hypothesis could lead to a targeted anti-inflammatory approach aimed at modulating immune cell function in HUS.  相似文献   

14.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   

15.
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.  相似文献   

16.
Shiga toxin 1 (Stx1) is a virulence factor of enterohemorrhagic Escherichia coli, such as the O157:H7 strain. In the intestines, secretory IgA (SIgA) is a major component of the immune defense against pathogens and toxins. To form SIgA, the production of dimeric IgA that retains biological activity is an important step. We previously established hybrid-IgG/IgA having variable regions of the IgG specific for the binding subunit of Stx1 (Stx1B) and the heavy chain constant region of IgA. If hybrid-IgG/IgA cDNAs can be expressed in plants, therapeutic or preventive effects may be expected in people eating those plants containing a “plantibody”. Here, we established transgenic Arabidopsis thaliana expressing dimeric hybrid-IgG/IgA. The heavy and light chain genes were placed under the control of a bidirectional promoter and terminator of the chlorophyll a/b-binding protein of Arabidopsis thaliana (expression cassette). This expression cassette and the J chain gene were subcloned into a single binary vector, which was then introduced into A. thaliana by means of the Agrobacterium method. Expression and assembly of the dimeric hybrid-IgG/IgA in plants were revealed by ELISA and immunoblotting. The hybrid-IgG/IgA bound to Stx1B and inhibited Stx1B binding to Gb3, as demonstrated by ELISA. When Stx1 holotoxin was pre-treated with the resulting plantibody, the cytotoxicity of Stx1 was inhibited. The toxin neutralization was also demonstrated by means of several assays including Stx1-induced phosphatidylserine translocation on the plasma membrane, caspase-3 activation and 180 base-pair DNA ladder formation due to inter-nucleosomal cleavage. These results indicate that edible plants containing hybrid-IgG/IgA against Stx1B have the potential to be used for immunotherapy against Stx1-caused food poisoning.  相似文献   

17.
The B subunit of Shiga toxin and the Shiga-like toxins (SLTs) mediates receptor binding, cytotoxic specificity, and extracellular localization of the holotoxin. While the functional receptor for Shiga toxin, SLT type I (SLT-I), and SLT-II is the glycolipid designated Gb3, SLT-II variant (SLT-IIv) may use a different glycolipid receptor. To identify the domains responsible for receptor binding, localization in Escherichia coli, and recognition by neutralizing monoclonal antibodies, oligonucleotide-directed site-specific mutagenesis was used to alter amino acid residues in the B subunits of Shiga toxin and SLT-IIv. Mutagenesis of a well-conserved hydrophilic region near the amino terminus of the Shiga toxin B subunit rendered the molecule nontoxic but did not affect immunoreactivity or holotoxin assembly. In addition, elimination of one cysteine residue, as well as truncation of the B polypeptide by 5 amino acids, caused a total loss of activity. Changing a glutamate to a glutamine at the carboxyl terminus of the Shiga toxin B subunit resulted in the loss of receptor binding and immunoreactivity. However, the corresponding mutation in the SLT-IIv B subunit (glutamine to glutamate) did not reduce the levels of cytotoxicity but did affect extracellular localization of the holotoxin in E. coli.  相似文献   

18.
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.  相似文献   

19.
Enterohemorrhagic Escherichia coli (EHEC) is an important food-borne pathogen, which causes a wide spectrum of diseases ranging from hemorrhagic colitis to life-threatening hemolytic uremic syndrome (HUS). Currently, insufficient measures to prevent and treat EHEC infection make a vaccine against EHEC in great demand. EspA (E. coli secreted protein A), intimin, and Stx2 (Shiga toxin 2) are three predominant virulence factors of EHEC, and each of them has proved to be capable of inducing partial protective immunity. In this study, we constructed a trivalent recombinant protein designated EIS that is composed of EspA (E), C-terminal 300 amino acids of intimin (I) and B subunit of Stx2 (S), and tested it as vaccine using a mouse model. Our results showed that immunization of EIS induced strong humoral response to EspA, intimin and Stx2 and protected mice against the challenges with live EHEC or EHEC sonicated lysate. Moreover, it enhanced clearance of intestinally colonized bacteria. This work suggests that for EHEC vaccines using a combination of EspA, intimin and Stx2 antigens appears to be more effective than using any of these immunogens alone.  相似文献   

20.
The glycolipid globotriaosylceramide (Gb3) is the plasma membrane receptor that mediates the internalization of verotoxin (VT1) into susceptible cells by capping and receptor-mediated endocytosis (RME). Internalization of fluorescein isothiocyanate-conjugated holotoxin into Daudi lymphoma cells was found to be slower than the pentameric receptor binding B subunit alone, suggesting that the A subunit may interact with the membrane to compromise the lateral mobility of the receptor bound B subunit. 3-D reconstruction of fluorescent images by confocal microscopy confirmed the complete internalization of holotoxin. VT1 internalization and cytotoxicity was inhibited by monodansyl cadavarine, which supports a role for clathrin coated pits in the RME of VT1. Biotinylation of the B subunit (in contrast to fluorescein labelling) was found to prevent toxin internalization. This effect correlated with reduced binding of Gb3 and reduced cytotoxicity in vitro. By cleavage of the B subunit at the single tryptophan residue, the reduced Gb3 binding and lack of cellular internalization was shown to be due to the biotinylation of lysine 53 in the VT1 B subunit. This residue was not labelled with fluorescein isothiocyanate in the native protein. This conclusion was confirmed by the finding that biotinylation of VT2c (which contains lys 53) prevented glycolipid receptor binding, whereas biotinylation of VT2e (in which lys 53 is substituted by ile) had no effect. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号