首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study aimed to investigate the effects of low-load resistance training with vascular occlusion on the specific tension and tendon properties by comparing with those of high-load training. Nine participants completed 12 weeks (3 days/week) of a unilateral isotonic training program on knee extensors. One leg was trained using low load (20% of 1 RM) with vascular occlusion (LLO) and other leg using high load (80% of 1 RM) without vascular occlusion (HL). Before and after training, maximal isometric knee extension torque (MVC) and muscle volume were measured. Specific tension of vastus lateralis muscle (VL) was calculated from MVC, muscle volume, and muscle architecture measurements. Stiffness of tendon-aponeurosis complex in VL was measured using ultrasonography during isometric knee extension. Both protocols significantly increased MVC and muscle volume of quadriceps femoris muscle. Specific tension of VL increased significantly 5.5% for HL, but not for LLO. The LLO protocol did not alter the stiffness of tendon-aponeurosis complex in knee extensors, while the HL protocol increased it significantly. The present study demonstrated that the specific tension and tendon properties were found to remain following low-load resistance training with vascular occlusion, whereas they increased significantly after high-load training.  相似文献   

2.
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 +/- 5 yrs, height 1.63 +/- 0.06m and body mass 66.26 +/- 4.6kg: mean +/- SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14rad.s(-1) (through 90 degrees ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60 degrees of knee flexion. Rectal temperature was measured during 30min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P< 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05rad.s(-1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05rad.s(-1), extensors at 3.14rad.s(-1), and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

3.
We investigated the effect of low-intensity resistance exercise training on muscular size and strength where the interset rest period was shortened so as to reduce the metabolite clearance. Female subjects (aged 45.4 +/- 9.5 years, n = 10) performed bilateral knee extension exercises in a seated position on an isotonic leg extension machine. The exercise sessions consisted of 3 sets of exercise at a mean intensity of approximately 50% 1RM with an interset rest period of 30 seconds and was performed twice a week for a period of 12 weeks. The strength and the cross-sectional area (CSA) of the knee extensors and flexors were examined with an isokinetic dynamometer and magnetic resonance imaging (MRI), respectively. The CSAs of the knee extensors and flexors increased by 7.1 +/- 1.6% (p < 0.01, Wilcoxon signed rank test) and 2.5 +/- 1.4% (not significant), respectively. Isometric and isokinetic strengths increased significantly (p < 0.01) at all velocities examined, whereas no significant change was observed in those of knee flexors. These results indicate that a low-intensity resistance exercise with a short interset rest period is substantially effective in inducing muscular hypertrophy and concomitant increase in strength.  相似文献   

4.
Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In a randomized clinical trial the efficacy of strength training was studied in patients with myotonic dystrophy (n=33) and in patients with Charcot-Marie-Tooth disease (n=29). Measurements were performed at the start and after 8, 16 and 24 weeks of progressive resistance training. Surface electromyography (SEMG) of proximal leg muscles was recorded during isometric knee extension at maximum voluntary contraction (MVC) and at 20, 40, 60 and 80% of MVC. Changes in MVC, maximum electrical activity and torque–EMG ratios (TER) were calculated. Fatigue was studied by determining the changes in endurance and in the decline of the median frequency (Fmed) of the SEMG during a sustained contraction at 80% MVC. These parameters showed no significant changes after the training in either of the diagnostic groups. Only the Charcot-Marie-Tooth training group showed a gradual significant increase in mean MVC over the whole training period (21%). After 24 weeks, the increase in mean RMS was similar (25%), but this was mainly due to a sharp rise during the first 8 weeks of training (20%). The findings indicate that the initial strength increase was due to a neural factor, while the subsequent increase was mainly due to muscle hypertrophy.  相似文献   

6.
The purpose of the present study was to determine the effectiveness of a 24-week aquatic training (AT) program, which included both aerobic and resistance components, on muscle strength (isometric and dynamic), flexibility, and functional mobility in healthy women over 60 years of age. Twenty-two subjects were assigned randomly to either an AT (n = 12) or a control (C, n = 10) group. Volunteers participated in a supervised shallow-water exercise program for 60 minutes a day, 3 days a week; the exercise program consisted of a 10-minute warm-up and stretching, 25 minutes of endurance-type exercise (dancing) at 80% of heart rate (HR)(max), 20 minutes of upper- and lower-body resistance exercises with specialized water-resistance equipment, and a 5-minute cool down. Maximal isometric torque of knee extensors (KEXT) and knee flexors (KFLEX) were evaluated by a Cybex Norm dynamometer, grip strength (HGR) was evaluated using a Jamar hydraulic dynamometer, and dynamic strength was evaluated via the 3 repetition maximum (3RM) test for chest press, knee extension, lat pull down, and leg press. Jumping performance was evaluated using the squat jump (SJ), functional mobility with the timed up-and-go (TUG) test, and trunk flexion with the sit-and-reach test. Body composition was measured using the bioelectrical impedance method. The AT induced significant improvements in KEXT (10.5%) and KFLEX (13.4%) peak torque, HGR strength (13%), 3RM (25.7-29.4%), SJ (24.6%), sit-and-reach (11.6%), and TUG (19.8%) performance. The AT group demonstrated a significant increase in lean body mass (3.4%). No significant changes in these variables were observed in the C group. The results indicate that AT, with both aerobic and resistance components, is an alternative training method for improving neuromuscular and functional fitness performance in healthy elderly women.  相似文献   

7.
Adaptations in coactivation after isometric resistance training.   总被引:5,自引:0,他引:5  
Twenty sedentary male university students were randomly assigned to an experimental or a control group. The experimental group trained the knee extensors of one leg by producing 30 isometric extension maximal voluntary contractions (MVC) per day, three times per week for 8 wk. After 8 wk of training, extensor MVC in the trained leg increased 32.8% (P less than 0.05), but there was no change in vastus lateralis maximal integrated electromyographic activity (IEMGmax). The most important finding was that the degree of hamstring coactivation during extension MVC decreased by approximately 20% (P less than 0.05) after the 1st wk of training. Less pronounced adaptations occurred in the untrained leg: extension MVC force increased 16.2% (P less than 0.05), hamstring coactivity decreased 13% (P less than 0.05) after 2 wk of training, and vastus lateralis IEMGmax was unchanged. The same measures in legs of the control group were not changed during the study. There were no changes in flexion MVC, biceps femoris IEMGmax, or the degree of quadriceps coactivity during flexion MVC in either leg of the control or experimental group. A reduction in hamstring coactivity in the trained and untrained legs indicates that these muscles provide less opposing force to the contracting quadriceps. We conclude that this small but significant decrease in hamstring coactivation that occurs during the early stages of training is a nonhypertrophic adaptation of the neuromuscular system in response to static resistance training of this type.  相似文献   

8.
Resistance training is one of the major components of rehabilitation after musculoskeletal injury and surgery. Despite the importance of resistance training and the frequency of its use in rehabilitation, little is known about factors that are related to training load that might be useful in devising and monitoring training in a patient and comparing training intensities between individuals and groups. We hypothesized that the following would show a statistically significant relationship to training load: injury chronicity, self-assessed knee function (Hughston Clinic questionnaire), knee swelling (injured-uninjured midpatellar knee girth), uninjured knee girth, and body mass. The purpose of this study was to evaluate whether factors such as body mass are related to the load used in training the knee extensors in rehabilitation after knee surgery. Thirty-six individuals undergoing early-phase rehabilitation after knee arthroscopic meniscectomy surgery participated in this study. Subjects were tested 5 days after surgery, just prior to commencing a 6-week outpatient rehabilitation program, and again soon after the end of this rehabilitation program. The independent variables evaluated were age, gender, body mass, meniscus injured, injury chronicity, knee function self-assessment, knee swelling (injured-uninjured midpatellar girth), uninjured knee girth, and knee flexion and extension passive range of motion (difference between injured and uninjured side). The dependent variable was the load used for training the knee extensors on the knee extension machine in the final training session prior to the posttest. The only variable exhibiting a statistically significant (p = 0.001) relationship to knee extensor final training was age (r = -0.529). This finding, that age was the only variable to have a significant relationship with training load, suggests that clinicians' expectation of training intensity should decrease with an increase in the patient's age in the range studied (20-58 years) for patients recovering from knee arthroscopic meniscectomy.  相似文献   

9.
《Chronobiology international》2013,30(4-5):645-660
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 ± 5 yrs, height 1.63 ± 0.06 m and body mass 66.26 ± 4.6 kg: mean ± SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14 rad.s?1 (through 90° ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60° of knee flexion. Rectal temperature was measured during 30 min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P < 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05 rad.s?1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05 rad.s?1, extensors at 3.14 rad.s?1, and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

10.
The effects of strength conditioning on skeletal muscle function and mass were determined in older men. Twelve healthy untrained volunteers (age range 60-72 yr) participated in a 12-wk strength training program (8 repetitions/set; 3 sets/day; 3 days/wk) at 80% of the one repetition maximum (1 RM) for extensors and flexors of both knee joints. They were evaluated before the program and after 6 and 12 wk of training. Weekly measurements of 1 RM showed a progressive increase in strength in extensors and flexors. By 12 wk extensor and flexor strength had increased 107.4 (P less than 0.0001) and 226.7% (P less than 0.0001), respectively. Isokinetic peak torque of extensors and flexors measured on a Cybex II dynamometer increased 10.0 and 18.5% (P less than 0.05) at 60 degrees/s and 16.7 and 14.7% (P less than 0.05) at 240 degrees/s. The torque-velocity relationship showed an upward displacement of the curve at the end of training, mainly in the slow-velocity high-torque region. Midthigh composition from computerized tomographic scans showed an increase (P less than 0.01) in total thigh area (4.8%), total muscle area (11.4%), and quadriceps area (9.3%). Biopsies of the vastus lateralis muscle revealed similar increases (P less than 0.001) in type I fiber area (33.5%) and type II fiber area (27.6%). Daily excretion of urinary 3-methyl-L-histidine increased with training (P less than 0.05) by an average 40.8%. Strength gains in older men were associated with significant muscle hypertrophy and an increase in myofibrillar protein turnover.  相似文献   

11.
Strength training and determinants of VO2max in older men   总被引:2,自引:0,他引:2  
The effects of strength training on maximal aerobic power (VO2max) and some of its determinants were studied in 12 healthy older men (60-72 yr). They underwent 12 wk of strength conditioning of extensors and flexors of each knee with eight repetitions per set, three sets per session, and three sessions per week at 80% of the one repetition maximum (1 RM). Left knee extensors showed a 107% increase in 1 RM, a 10% increase in isokinetic strength at 60 degrees/s, and a 23% increase in total work performed during 25 contractions on an isokinetic dynamometer. Strength measurements of the untrained left elbow extensors showed no change. Leg cycle ergometer VO2max per unit fat-free mass increased by an average 1.9 ml (P = 0.034) whereas arm cycle VO2max was unchanged. Pulmonary function, hemoglobin concentration, erythrocyte volume, plasma volume, and total blood volume did not change. Biopsies of the vastus lateralis showed a 28% increase in mean fiber area, no change in fiber type distribution, a 15% increase in capillaries per fiber, and a 38% increase in citrate synthase activity. The data suggest that the small increase in leg cycle VO2max in older men may be due to adaptations in oxidative capacity and increased mass of the strength-trained muscles.  相似文献   

12.
Our previous study showed that relatively low-intensity (approximately 50% one-repetition maximum [1RM]) resistance training (knee extension) with slow movement and tonic force generation (LST) caused as significant an increase in muscular size and strength as high-intensity (approximately 80% 1RM) resistance training with normal speed (HN). However, that study examined only local effects of one type of exercise (knee extension) on knee extensor muscles. The present study was performed to examine whether a whole-body LST resistance training regimen is as effective on muscular hypertrophy and strength gain as HN resistance training. Thirty-six healthy young men without experience of regular resistance training were assigned into three groups (each n = 12) and performed whole-body resistance training regimens comprising five types of exercise (vertical squat, chest press, latissimus dorsi pull-down, abdominal bend, and back extension: three sets each) with LST (approximately 55-60% 1RM, 3 seconds for eccentric and concentric actions, and no relaxing phase); HN (approximately 80-90% 1RM, 1 second for concentric and eccentric actions, 1 second for relaxing); and a sedentary control group (CON). The mean repetition maximum was eight-repetition maximum in LST and HN. The training session was performed twice a week for 13 weeks. The LST training caused significant (p < 0.05) increases in whole-body muscle thickness (6.8 +/- 3.4% in a sum of six sites) and 1RM strength (33.0 +/- 8.8% in a sum of five exercises) comparable with those induced by HN training (9.1 +/- 4.2%, 41.2 +/- 7.6% in each measurement item). There were no such changes in the CON group. The results suggest that a whole-body LST resistance training regimen is as effective for muscular hypertrophy and strength gain as HN resistance training.  相似文献   

13.
Four men isometrically trained their stronger leg for 19 weeks (attempted knee extension against a restraining strap incrementally increasing to 30 brief maximal contractions X 6 wk-1). Five others similarly trained dynamically (repeated knee extension against a 63 N resistance force, incrementally increasing to 300 extensions X 6 wk-1). Before, at regular intervals during training and after de-training (between 7-11 weeks) measurements were made using trained and control legs of: Maximum Voluntary Isometric Contraction (M.V.C.), Endurance at 60% M.V.C., Knee Extension Performance Test (K.E.P.T.) and One-legged Work Test. Isometric training produced a 30% (p less than 0.01) increase in M.V.C. with a 15% (p less than 0.05) increase in the control leg. These changes persisted with some deterioration after the de-training period. Endurance at 60% M.V.C. remained unchanged, even though M.V.C. was increasing in both trained and control legs. There was some evidence that isometric training improved the cardio-vascular response to one-legged exercise. Dynamic training did not result in changes in M.V.C., Endurance at 60% M.V.C. or the One-legged work Test, but K.E.P.T. (time taken for 50 knee extensions at a comfortable pace against 63 N resistance) improved by 33% (p less than 0.01) and 28% (p less than 0.01) in the trained and control legs respectively. Isometric training resulted in similar improvements in performance of K.E.P.T. (28%, p less than 0.05, trained leg; 18%, p less than 0.05 control leg). For similar time spent in training, isometric work appeared more effective than dynamic work in improving the parameters of muscle function, these improvements appeared to be both centrally (C.N.S.) and locally mediated.  相似文献   

14.
The purpose of this study was to determine whether various positions of the lower extremity affect the muscle activity of the vastus medialis obliquus (VMO) differently during both open and closed kinetic chain exercise conditions among patients with patellofemoral pain syndrome (PFPS). Patients who presented with symptoms consistent with PFPS completed a series of open kinetic chain and closed kinetic chain exercises in which VMO activity was measured and compared. Statistical analysis revealed that there is less than a 0.001% (open kinetic chain) or 0.005% (closed kinetic chain) chance that all positions activate the VMO equally. In open kinetic exercise, maximum VMO activity was achieved with terminal knee extension with medial tibial rotation. During closed kinetic exercises, squats with external rotation were preferred for maximum VMO activation. Therefore, our results highlight the importance of including both the open and closed kinetic chain exercises into rehabilitation programs for patients with PFPS.  相似文献   

15.
The purpose of this study was to examine the effect of graded conditioning contractions of the antagonist knee flexor muscles on the output characteristics of knee extensor muscles in healthy humans. Eight male university students performed maximum isometric contractions of knee extensors, preceded by isometric conditioning contractions of the antagonist knee flexors. The developed force and electromyographic (EMG) amplitudes of the knee extensors after the conditioning contraction were measured and compared with those of simple knee extension without conditioning. The forces of the conditioning flexor contraction were set at three levels: low (20% of maximum voluntary contraction: MVC), moderate (60% of MVC), and high (100% of MVC). The EMG amplitudes of the vastus medialis, vastus lateralis, and rectus femoris muscle were recorded and the root mean square amplitudes were calculated. The strongest enhancement of the extension force was obtained by moderate intensity conditioning contraction (108.95+/-1.87% of simple knee extension), although high intensity conditioning also induced a significant increase (105.41+/-2.69%). Low intensity conditioning did not cause a significant enhancement of the contraction force (103.17+/-2.99%). Similarly, the EMG amplitudes were significantly increased by moderate and/or high conditioning. These results suggest that antagonist conditioning contraction of moderate intensities is sufficient and may be optimal to potentiate knee extensor contraction.  相似文献   

16.
The purpose of the present study was to clarify the effect of static stretching on muscular performance during concentric isotonic (dynamic constant external resistance [DCER]) muscle actions under various loads. Concentric DCER leg extension power outputs were assessed in 12 healthy male subjects after 2 types of pretreatment. The pretreatments included (a) static stretching treatment performing 6 types of static stretching on leg extensors (4 sets of 30 seconds each with 20-second rest periods; total duration 20 minutes) and (b) nonstretching treatment by resting for 20 minutes in a sitting position. Loads during assessment of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The peak power output following the static stretching treatment was significantly (p < 0.05) lower than that following the nonstretching treatment under each load (5% MVC, 418.0 +/- 82.2 W vs. 466.2 +/- 89.5 W; 30% MVC, 506.4 +/- 82.8 W vs. 536.4 +/- 97.0 W; 60% MVC, 478.6 +/- 77.5 W vs. 523.8 +/- 97.8 W). The present study demonstrated that relatively extensive static stretching significantly reduces power output with concentric DCER muscle actions under various loads. Common power activities are carried out by DCER muscle actions under various loads. Therefore, the result of the present study suggests that relatively extensive static stretching decreases power performance.  相似文献   

17.
Strength training counteracts motor performance losses during bed rest.   总被引:4,自引:0,他引:4  
The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups (P < 0.05), with a greater amount (P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr (P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.  相似文献   

18.
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women.  相似文献   

19.
Ten healthy young men (21.0 +/- 1.5 yr, 1.79 +/- 0.1 m, 82.7 +/- 14.7 kg, means +/- SD) participated in 8 wk of intense unilateral resistance training (knee extension exercise) such that one leg was trained (T) and the other acted as an untrained (UT) control. After the 8 wk of unilateral training, infusions of L-[ring-d(5)]phenylalanine, L-[ring-(13)C(6)]phenylalanine, and d(3)-alpha-ketoisocaproic acid were used to measure mixed muscle protein synthesis in the T and UT legs by the direct incorporation method [fractional synthetic rate (FSR)]. Protein synthesis was determined at rest as well as 4 h and 28 h after an acute bout of resistance exercise performed at the same intensity relative to the gain in single repetition maximum before and after training. Training increased mean muscle fiber cross-sectional area only in the T leg (type I: 16 +/- 10%; type II: 20 +/- 19%, P < 0.05). Acute resistance exercise increased muscle protein FSR in both legs at 4 h (T: 162 +/- 76%; UT: 108 +/- 62%, P < 0.01 vs. rest) with the increase in the T leg being significantly higher than in the UT leg at this time (P < 0.01). At 28 h postexercise, FSR in the T leg had returned to resting levels; however, the rate of protein synthesis in the UT leg remained elevated above resting (70 +/- 49%, P < 0.01). We conclude that resistance training attenuates the protein synthetic response to acute resistance exercise, despite higher initial increases in FSR, by shortening the duration for which protein synthesis is elevated.  相似文献   

20.
Although research has demonstrated that isokinetic eccentric (ECC) strength is 20-60% greater than isokinetic concentric (CON) strength, few data exist comparing these strength differences in standard dynamic resistance exercises. The purpose of the study was to determine the difference in maximal dynamic ECC and CON strength for 6 different resistance exercises in young men and women. Ten healthy young men (mean +/- SE, 25.30 +/- 1.34 years), and 10 healthy young women (mean +/- SE, 23.40 +/- 1.37 years) who were regular exercisers with resistance training experience participated in the study. Two sessions were performed to determine CON and ECC 1 repetitions maximum for latissimus pull-down (LTP), leg press (LP), bench press (BP), leg extension (LE), seated military press (MP), and leg curl (LC) exercises. Maximal ECC and maximal CON strength were determined on weight stack machines modified to isolate ECC and CON contractions using steel bars and pulleys such that only 1 type of contraction was performed. Within 2 weeks, participants returned and completed a retest trial in a counterbalanced fashioned. Test-retest reliability was excellent (r = 0.99) for all resistance exercise trials. Men demonstrated 20-60% greater ECC than CON strength (LTP = 32%, LP = 44%, BP = 40%, LE = 35%, MP = 49%, LC = 27%). Women's strength exceeded the proposed parameters for greater ECC strength in 4 exercises, p < 0.05 (LP = 66%, BP = 146%, MP = 161%, LC = 82%). The ECC/CON assessment could help coaches capitalize on muscle strength differences in young men and women during training to aid in program design and injury prevention and to enhance strength development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号