首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student’s t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p < 0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports.  相似文献   

2.
3.
Range of motion (ROM) measurements are essential for the evaluation for and diagnosis of adhesive capsulitis of the shoulder (AC). However, taking these measurements using a goniometer is inconvenient and sometimes unreliable. The Kinect (Microsoft, Seattle, WA, USA) is gaining attention as a new motion detecting device that is nonintrusive and easy to implement. This study aimed to apply Kinect to measure shoulder ROM in AC; we evaluated its validity by calculating the agreement of the measurements obtained using Kinect with those obtained using goniometer and assessed its utility for the diagnosis of AC. Both shoulders of 15 healthy volunteers and affected shoulders of 12 patients with AC were included in the study. The passive and active ROM of each were measured with a goniometer for flexion, abduction, and external rotation. Their active shoulder motions for each direction were again captured using Kinect and the ROM values were calculated. The agreement between the two measurements was tested with the intraclass correlation coefficient (ICC). Diagnostic performance using the Kinect ROM was evaluated with Cohen’s kappa value. The cutoff values of the limited ROM were determined in the following ways: the same as passive ROM values, reflecting the mean difference, and based on receiver operating characteristic curves. The ICC for flexion/abduction/external rotation between goniometric passive ROM and the Kinect ROM were 0.906/0.942/0.911, while those between active ROMs and the Kinect ROMs were 0.864/0.932/0.925. Cohen’s kappa values were 0.88, 0.88, and 1.0 with the cutoff values in the order above. Measurements of the shoulder ROM using Kinect show excellent agreement with those taken using a goniometer. These results indicate that the Kinect can be used to measure shoulder ROM and to diagnose AC as an alternative to goniometer.  相似文献   

4.
Knee ligamentous injuries persist in the sport of Alpine skiing. To better understand the load mechanisms which lead to injury, pure varus/valgus and pure axial moments were applied both singly and in combination to the right knees of six human test subjects. The corresponding relative knee rotations in three degrees of freedom were measured. Knee flexion angles for each test subject were 15 and 60 degrees for the individual moments and 60 degrees for the combination moments. For both knee flexion angles the hip flexion angle was 0 degrees. Leg muscles were quiescent and axial force was minimal during all tests. Tables of data include sample statistics for each of four flexibility parameters in each loading direction. Data were analyzed statistically to test for significant differences in flexibility parameters between the test conditions. In flexing the knee from 15 to 60 degrees, the resulting knee rotations under single moments depended upon flexion angle with varus, valgus, and internal rotations increasing significantly. Also, rotations were different depending on load direction; varus rotation was significantly different and greater than valgus rotation at both flexion angles. Also external rotation was significantly different and greater than internal at 15 degrees flexion, but not at 60 degrees flexion. Coupled rotations under single moments were also observed. Applying pure varus/valgus moments resulted in coupled external/internal rotations which were inconsistent and hence not significant. Applying pure axial moments resulted in consistent and hence significant varus/valgus rotations; an external axial moment induced varus rotation and an internal axial moment induced valgus rotation. For combination moments, varus/valgus rotations decreased significantly from those rotations at similar load levels in the single moment studies. Also, a varus moment significantly increased external rotation and a valgus moment significantly decreased internal rotation. These differences indicate significant interaction between corresponding load combinations. These results suggest that load interaction is a potentially important phenomenon in knee injury mechanics.  相似文献   

5.
Coupled axial tibial rotation in response to an anterior tibial load has been used as a common diagnostic measurement and as a means to load the ligamentous structures during laboratory tests. However, the exact location of the point of application of these loads as well as the corresponding sensitivity of the coupled tibial rotation to this point can have an effect on the function of the soft tissues at the joint. Therefore, the purpose of this study was to determine the effects of four different points of application of the anterior tibial load on the anterior tibial translation and coupled axial tibial rotation. The four points include: (1) geometric point - midway between the collateral ligament insertion sites on the tibia, (2) clinical point - a position that attempts to simulate clinical diagnostic tests, (3) medial point - a position medial to the geometric point and (4) lateral point - a position lateral to the clinical point. A robotic/universal force-moment sensor testing system was used to apply the anterior tibial load at the four points of application and to record the resulting joint motion. Anterior tibial translation in response to an anterior tibial load of 100N was found not to vary between the four points of application of the anterior tibial load at all flexion angles examined. However, internal tibial rotation was found for the lateral point (13+/-10 degrees at 30 degrees of knee flexion) in all specimens and clinical point (8+/-10 degrees at 30 degrees of knee flexion) while external rotation resulted when the load was applied at the medial point (-8+/-7 degrees at 30 degrees of knee flexion). Both internal and external tibial rotations occurred throughout the range of flexion when the tibial load was applied at the geometric point. The results suggest that the clinical point should be used as the point of application of the anterior tibial load whenever clinical examinations are simulated and multi-degree-of-freedom joint and soft tissue function are examined.  相似文献   

6.
The foot consists of many small bones with complicated joints that guide and limit motion. A variety of invasive and noninvasive means [mechanical, X-ray stereophotogrammetry, electromagnetic sensors, retro-reflective motion analysis, computer tomography (CT), and magnetic resonance imaging (MRI)] have been used to quantify foot bone motion. In the current study we used a foot plate with an electromagnetic sensor to determine an individual subject's foot end range of motion (ROM) from maximum plantar flexion, internal rotation, and inversion to maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. We then used a custom built MRI-compatible device to hold each subject's foot during scanning in eight unique positions determined from the end ROM data. The scan data were processed using software that allowed the bones to be segmented with the foot in the neutral position and the bones in the other seven positions to be registered to their base positions with minimal user intervention. Bone to bone motion was quantified using finite helical axes (FHA). FHA for the talocrural, talocalcaneal, and talonavicular joints compared well to published studies, which used a variety of technologies and input motions. This study describes a method for quantifying foot bone motion from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation with relatively little user processing time.  相似文献   

7.
The aim of the present study was to evaluate retropatellar contact characteristics at different angles of flexion of the knee joint. To this end, 6 cadaveric legs were examined using pressure sensitive film (Fuji Prescale type "super low") at angles of flexion of 45 degrees, 60 degrees, 90 degrees and 120 degrees both in neutral rotation and 10 degrees internal and external rotation of the femur in the same knee joints. A force of 140 N was applied to both the vastus medialis and lateralis, and a comparison made with a medially and a laterally dominating muscle force. The contact areas decreased with increasing angles of flexion. The medially dominating muscle traction increased the contact area. Comparison between internal and external rotation revealed a decrease in contact area on internal rotation. The pressure measurements were comparable in all loading situations. Comparison between neutral and medial traction revealed significant differences in contact area, pressure and force. The influence of femoral rotation showed no significant difference. A comparison of the different angles of flexion revealed only few significant differences. To prevent the development of retropatellar arthrosis, maximum contact areas are necessary. The study has shown an advantage for medially dominating muscle traction, and external rotation of the femur.  相似文献   

8.
Stretching exercise is effective for increasing joint range of motion (ROM). However, the Surgeon General's Report and the American College of Sports Medicine cite a lack of studies identifying strategies capable of increasing the effectiveness of stretching exercise. This investigation evaluated adding modest weight (0.45-1.35 kg) to a stretching exercise routine (Body Recall [BR]) on joint ROM. Forty-three subjects ages 55-83 years participated in 1 of 2 training groups, BR, BR with weights (BR+W), or a control group (C). ROM was evaluated at the neck, shoulder, hip, knee, and ankle before and after 10 weeks of exercise. Using ANCOVA, significant differences (p < 0.01) were observed for right and left cervical rotation, hip extension, ankle dorsiflexion, ankle plantar flexion, and shoulder flexion. Post hoc analysis revealed that cervical rotation (left and right), hip extension, and ankle dorsiflexion for BR+W subjects differed significantly from BR and C (p < 0.01). Significant differences with shoulder flexion and ankle plantar flexion were found for both BR and BR+W in comparison to C (p < 0.01). Results indicate that addition of weights enhanced the effectiveness of stretching exercise for increasing joint ROM with 4 of the 6 selected measurements. Thus, a modest intensity exercise program that is within the reach of most elderly may significantly affect joint ROM and flexibility.  相似文献   

9.
Pitching is suggested to expose the arm to physical stress that may lead to a decrease in strength. The purpose of this study was to examine the isokinetic internal and external rotational shoulder strength of Division II pitchers preseason, midseason, and postseason. The 9 pitchers were 23 +/- 0.67 years of age and weighed 91.2 +/- 3.14 kg. Each subject was evaluated utilizing a Biodex Isokinetic Dynamometer. Isokinetic internal and external concentric strength was assessed at 90 degrees of shoulder abduction and 90 degrees of elbow flexion at 300 and 450 degrees .s(-1) at each time point. A repeated-measures analysis of variance statistical analysis was performed using SPSS software. All data are reported as mean +/- SEM. Mean internal peak torques at 300 and 450 degrees .s(-1) preseason, midseason, and postseason were 50.66 +/- 2.27, 49.70 +/- 2.54, and 51.70 +/- 2.94 N.m and 37.14 +/- 2.54, 37.36 +/- 2.74, and 38.26 +/- 2.50 N.m, respectively. Mean external peak torques at 300 and 450 degrees .s(-1) preseason, midseason, and postseason were 30.16 +/- 1.69, 29.50 +/- 2.22, and 29.79 +/- 2.08 N.m and 17.68 +/- 2.15, 16.89 +/- 2.46, and 18.20 +/- 2.35 N.m, respectively. There were no differences in isokinetic internal or external concentric shoulder rotational mean peak torque of Division II pitchers at any speed tested or time point examined.  相似文献   

10.
The aim of this study was to image tibio-femoral movement during flexion in the living knee. Ten loaded male Caucasian knees were initially studied using MRI, and the relative tibio-femoral motions, through the full flexion arc in neutral tibial rotation, were measured. On knee flexion from hyperextension to 120 degrees , the lateral femoral condyle moved posteriorly 22 mm. From 120 degrees to full squatting there was another 10 mm of posterior translation, with the lateral femoral condyle appearing almost to sublux posteriorly. The medial femoral condyle demonstrated minimal posterior translation until 120 degrees . Thereafter, it moved 9 mm posteriorly to lie on the superior surface of the medial meniscal posterior horn. Thus, during flexion of the knee to 120 degrees , the femur rotated externally through an angle of 20 degrees . However, on flexion beyond 120 degrees , both femoral condyles moved posteriorly to a similar degree. The second part of this study investigated the effect of gender, side, load and longitudinal rotation. The pattern of relative tibio-femoral movement during knee flexion appears to be independent of gender and side. Femoral external rotation (or tibial internal rotation) occurs with knee flexion under loaded and unloaded conditions, but the magnitude of rotation is greater and occurs earlier on weight bearing. With flexion plus tibial internal rotation, the pattern of movement follows that in neutral. With flexion in tibial external rotation, the lateral femoral condyle adopts a more anterior position relative to the tibia and, particularly in the non-weight bearing knee, much of the femoral external rotation that occurs with flexion is reversed.  相似文献   

11.
The purpose of this study was to evaluate whether preoperative gait adaptations persist one year after THR in the same set of subjects. The hypothesis tested was that hip dynamic range of motion and peak external moments during walking return to normal after THR. Hip kinematics and kinetics were measured for 28 subjects before and one year after THR and compared to those of 25 subjects with radiographically normal hips. All THR subjects improved clinically after surgery with Harris hip scores improving from 33-85 (average 53) to 61-100 (average 95) (sign test p<0.001). Preoperatively dynamic hip range of motion (ROM), and all peak external moments were reduced compared to normal (Mann-Whitney p< or =0.040). Improvement was seen in the ROM and all but the frontal plane, and external rotation peak moments (Friedman p< or =0.023). The preoperative and postoperative values of the ROM, and peak flexion, abduction and external rotation moments were all significantly correlated (Spearman p<0.020) indicating a possible learned effect from before THR surgery. Postoperative THR subjects continued to have a significantly lower than normal ROM, and peak adduction and peak internal rotation moments (Mann-Whitney p< or =0.003). Despite good to excellent clinical functional outcome, gait in THR patients does not return to normal by one year after surgery. Aggressive muscle strengthening is currently not emphasized after THR surgery. Some THR patients may benefit from more intensive rehabilitation before and after surgery.  相似文献   

12.
A high prevalence and incidence of neck and shoulder pain is present in the working population, especially sedentary workers. Recent findings have indicated that the flexion-relaxation (FR) ratio in the cervical erector spinae (CES) muscles might be a significant criteria of neuromuscular impairment and function. Additionally, the active cervical range of motion (ROM) is frequently used for discriminating between individuals with pain and those who are asymptomatic. The purpose of the present study was to examine the relationship between the active cervical ROM and the FR ratio in a sample of regular visual display terminal (VDT) workers. In total, 20 asymptomatic male VDT workers were recruited. Active cervical ROM was measured by a cervical ROM (CROM) instrument. Surface electromyography (EMG) was used to collect myoelectrical signals from the CES muscles, and the FR ratio was calculated for statistical analysis. Pearson correlation coefficients were used to quantify the linear relationship between the active cervical ROM and the FR ratio. The values obtained for the FR ratio in the right CES muscles correlated significantly with the active cervical ROM measured in flexion (r=0.73, p<0.01), left lateral flexion (r=0.64, p<0.01), and left rotation (r=0.60, p<0.01). Flexion (r=0.74, p<0.01) and right lateral flexion (r=0.61, p<0.01) positively correlated with the left FR ratio. Extension and right rotation showed either a very weak or no correlation with the mean value of the right and left FR ratio. Our findings suggested that the cervical FR ratio had a positive correlation with cervical movements, and that changes of the activation patterns in CES demonstrated as cervical FR ratio are associated with reduction of the cervical range of motion including flexion and lateral flexion. In addition, muscular dysfunction of the CES could occur in regular computer workers prior to occurrence of pain; this means that the FR ratio could be used to evaluate the potential risk of neck discomfort in computer workers.  相似文献   

13.
Excessive flexion and internal rotation of the hip is a common gait abnormality among individuals with cerebral palsy. The purpose of this study was to examine the influence of hip flexion on the rotational moment arms of the hip muscles. We hypothesized that flexion of the hip would increase internal rotation moment arms and decrease external rotation moment arms of the primary hip rotators. To test this hypothesis we measured rotational moment arms of the gluteus maximus (six compartments), gluteus medius (four compartments), gluteus minimus (three compartments) iliopsoas, piriformis, quadratus femoris, obturator internus, and obturator externus. Moment arms were measured at hip flexion angles of 0, 20, 45, 60, and 90 degrees in four cadavers. A three-dimensional computer model of the hip muscles was developed and compared to the experimental measurements. The experimental results and the computer model showed that the internal rotation moment arms of some muscles increase with flexion; the external rotation moment arms of other muscles decrease, and some muscles switch from external rotation to internal rotation as the hip is flexed. This trend toward internal rotation with hip flexion was apparent in 15 of the 18 muscle compartments we examined, suggesting that excessive hip flexion may exacerbate internal rotation of the hip. The gluteus maximus was found to have a large capacity for external rotation. Enhancing the activation of the gluteus maximus, a muscle that is frequently underactive in persons with cerebral palsy, may help correct excessive flexion and internal rotation of the hip.  相似文献   

14.
The purpose of this study was to determine intrarater reliability of the 1 repetition maximum (1RM) estimation for shoulder internal rotation. The accuracy of the estimated 1RM was determined by establishing the actual 1RM. Fifteen subjects were positioned supine with the shoulder in 0 degrees abduction (position 1) and prone with the shoulder in 90 degrees abduction (position 2). Subjects were placed in both testing positions and performed resisted shoulder internal rotation. A 1RM estimation equation was used to estimate shoulder internal rotation strength. After 1 week, procedures were repeated and intrarater reliability was calculated. One week after 1RM estimation procedures were completed, the accuracy of an estimated 1RM was determined by establishing an actual 1RM. The results indicated excellent intrarater reliability for position 1 (intraclass correlation coefficient [ICC] = 0.99) and position 2 (ICC = 0.96). The correlation coefficients for accuracy indicated excellent concurrent validation was attained for position 1 (ICC = 0.99) and position 2 (ICC = 0.97). Shoulder internal rotation 1RM estimation appears to be reliable and accurate. Clinicians may use submaximal loads to estimate the 1RM and decrease the possibility of injury during actual 1RM strength testing.  相似文献   

15.
16.
The purpose of this study was to determine the relationship between hip and knee strength, and valgus knee motion during a single leg squat. Thirty healthy adults (15 men, 15 women) stood on their preferred foot, squatted to approximately 60 deg of knee flexion, and returned to the standing position. Frontal plane knee motion was evaluated using 3-D motion analysis. During Session 2, isokinetic (60 deg/sec) concentric and eccentric hip (abduction/adduction, flexion/extension, and internal/external rotation) and knee (flexion/extension) strength was evaluated. The results demonstrated that hip abduction (r2=0.13), knee flexion (r2=0.18), and knee extension (r2=0.14) peak torque were significant predictors of frontal plane knee motion. Significant negative correlations showed that individuals with greater hip abduction (r=-0.37), knee flexion (r=-0.43), and knee extension (r=-0.37) peak torque exhibited less motion toward the valgus direction. Men exhibited significantly greater absolute peak torque for all motions, excluding eccentric internal rotation. When normalized to body mass, men demonstrated significantly greater strength than women for concentric hip adduction and flexion, knee flexion and extension, and eccentric hip extension. The major findings demonstrate a significant role of hip muscle strength in the control of frontal plane knee motion.  相似文献   

17.
Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p < 0.05), and the OKCRT group improved 0.3 mph (0.5%, NS). A significant interaction was observed (p < 0.05). The CKCRT group improved its 1RM bench press to the same degree (1.9 kg) as the OKCRT group (p < 0.05 within each group). The CKCRT group improved all measures of shoulder strength and power, whereas OKCRT conferred little change in shoulder torque and power scores. Although throwing is an open-chain movement, adaptations from CKCRT may confer benefits to subsequent performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.  相似文献   

18.

Background and Objectives

 Little is known about the relation between residual muscle strength and joint contracture formation in neuromuscular disorders. This study aimed to investigate the relation between residual muscle strength and shoulder joint contractures in children with sequelae of obstetric brachial plexus lesion (OBPL). In OBPL a shoulder joint contracture is a frequent finding. We hypothesize that residual internal and external rotator strength and their balance are related to the extent of shoulder joint contracture.

Methods

 Clinical assessment was performed in 34 children (mean 10.0 years) with unilateral OBPL and Narakas classes I–III. External and internal rotation strengths were measured with the shoulder in neutral position using a handheld dynamometer. Strength on the affected side was given as percentage of the normal side. Contracture was assessed by passive internal and external rotations in degrees (in 0° abduction). Mallet classification was used for active shoulder function.

Results

 External and internal rotation strengths on the affected side were approximately 50% of the normal side and on average both equally affected: 56% (SD 18%) respectively 51% (SD 27%); r = 0.600, p = 0.000. Residual strengths were not related to passive internal or external rotation (p > 0.200). Internal rotation strength (r =  − 0.425, p <0.05) was related to Narakas class. Mallet score was related to external and internal rotation strengths (r = 0.451 and r = 0.515, respectively; p < 0.01).

Conclusion

 The intuitive notion that imbalances in residual muscle strength influence contracture formation cannot be confirmed in this study. Our results are of interest for the understanding of contracture formation in OBPL.  相似文献   

19.
This study determined in-vitro anterior cruciate ligament (ACL) force patterns and investigated the effect of external tibial loads on the ACL force patterns during simulated weight-bearing knee flexions. Nine human cadaveric knee specimens were mounted on a dynamic knee simulator, and weight-bearing knee flexions with a 100N of ground reaction force were simulated; while a robotic/universal force sensor (UFS) system was used to provide external tibial loads during the movement. Three external tibial loading conditions were simulated, including no external tibial load (termed BW only), a 50N anterior tibial force (ATF), and a 5Nm internal rotation tibial torque (ITT). The tibial and femoral kinematics was measured with an ultrasonic motion capture system. These movement paths were then accurately reproduced on a robotic testing system, and the in-situ force in the ACL was determined via the principle of superposition. The results showed that the ATF significantly increased the in-situ ACL force by up to 60% during 0-55 degrees of flexion, while the ITT did not. The magnitude of ACL forces decreased with increasing flexion angle for all loading conditions. The tibial anterior translation was not affected by the application of ATF, whereas the tibial internal rotation was significantly increased by the application of ITT. These data indicate that, in a weight-bearing knee flexion, ACL provides substantial resistance to the externally applied ATF but not to the ITT.  相似文献   

20.
The purpose of this study was to examine the effects of a 4-month season of collegiate tennis on glenohumeral joint internal and external rotation strength and range of motion in female collegiate tennis players. Eleven female collegiate tennis players were isokinetically tested to assess glenohumeral joint internal and external rotation strength with 90 degrees of abduction on a Cybex 6000 isokinetic dynamometer. Subjects were also measured for internal and external rotation range of motion using a universal goniometer with 90 degrees of abduction. Measurements were taken before and immediately after a 4-month season of competitive collegiate tennis play. A repeated-measures analysis of variance showed no significant difference in internal or external rotation strength or range of motion between pre- and postseason measures. Results from this study show that, despite 4 months of competitive tennis play, changes in rotational strength and range of motion did not occur. These data have implications for clinicians as well as strength and conditioning professionals designing rehabilitation and preventative conditioning programs for athletes in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号